首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnO film ultraviolet photodetectors (UV PDs) have always suffered from slow speed and low photosensitivity that restrict their broader applications. To break through those barriers, high‐performance ZnO UV PD based on self‐polarized BaTiO3 (BTO) is first introduced through a facile one‐step spin‐coating method. Compared with pure ZnO film UV PD with low on/off ratio (65) and slow speed (4.1/7.5 s) at 3 V bias under 350 nm UV light, the BTO‐ZnO bilayer film device exhibits an ultrahigh on/off ratio (14 300) and ultrafast response speed (0.11/5.80 ms), which is much faster than that of the most reported ZnO film‐based UV PDs. The numerical simulation demonstrates that the spatial distribution of electron concentration of ZnO film is regulated by the self‐polarization of BTO film, resulting in low dark current and fast response time of the BTO‐ZnO PD. This work provides a new approach to fabricate high‐performance PDs based on self‐polarized ferroelectric materials.  相似文献   

2.
Despite multiple research approaches to prevent bacterial colonization on surfaces, device‐associated infections are currently responsible for about 50% of nosocomial infections in Europe and significantly increase health care costs, which demands development of advanced antibacterial surface coatings. Here, novel antimicrobial composite materials incorporating zinc oxide nanoparticles (ZnO NP) into biocompatible poly(N‐isopropylacrylamide) (PNIPAAm) hydrogel layers are prepared by mixing the PNIPAAm prepolymer with ZnO NP, followed by spin‐coating and photocrosslinking. Scanning electron microscopy (SEM) characterization of the composite film morphology reveals a homogeneous distribution of the ZnO NP throughout the film for every applied NP/polymer ratio. The optical properties of the embedded NP are not affected by the matrix as confirmed by UV‐vis spectroscopy. The nanocomposite films exhibit bactericidal behavior towards Escherichia coli (E. coli) for a ZnO concentration as low as ≈0.74 μg cm?2 (1.33 mmol cm?3), which is determined by inductively coupled plasma optical emission spectrometry. In contrast, the coatings are found to be non‐cytotoxic towards a mammalian cell line (NIH/3T3) at bactericidal loadings of ZnO over an extended period of seven days. The differential toxicity of the ZnO/hydrogel nanocomposite thin films between bacterial and cellular species qualifies them as promising candidates for novel biomedical device coatings.  相似文献   

3.
Accurate detection of ultraviolet radiation is critical to many technologies including wearable devices for skin cancer prevention, optical communication systems, and missile launch detection. Here, a nanoscale architecture is presented for band‐selective UV‐photodetectors, which features unique tunability and miniaturization potential. The device layout relies on the 3D integration of ultraporous layers of tailored nanoparticles. By tailoring the transmittance window between the indirect band gap of TiO2 nanoparticles and the sharp edge of the direct band gap of ZnO, a band‐selective photoresponse is achieved with tunable bandwidth to less than 30 nm and photo‐ to dark‐current ratios of several millions at a light intensity of 86 μW cm?2 and operation bias of 1 V. The potential of this integrated morphology is shown by fabrication of the first inherent UVA photodetector with selectivity against the edge of the UVB and visible light of nearly 60 times. This tunable architecture and nanofabrication approach are compatible with state‐of‐the micromachining technologies and provide a flexible solution for the engineering of wearable band‐selective photodetectors.  相似文献   

4.
Although zinc oxide (ZnO) is one of the most commonly used materials for electron transport layers in organic solar cells (OSCs), it also comes with disadvantages such as the so-called light-soaking issues, i.e., its need for exposure to UV light to reach its full potential in OSCs. Here, the impact of ZnO light-soaking issues on stability measurements of OSCs is investigated. It is found that in the absence of UV light a reversible degradation occurs, which is independent of the used active layer material and accelerates at higher temperatures but can be undone with a short UV exposure. This reversible aging is attributed to the re-adsorption of oxygen, which for manufacturing reasons is trapped at the interface of ZnO, even in an oxygen-free environment. This oxygen can be removed with a UV pretreatment of the ZnO but at the expense of device efficiency and production that has to take place in an oxygen-free environment. This study establishes that stability measurements of ZnO-containing OSCs must be performed exclusively with a light source including a UV part since the usage of a simple white light source – as often reported in the literature – can lead to erroneous results.  相似文献   

5.
ZnO foam/carbon quantum dots (CQDs) nanocomposite has been successfully synthesized by a facile process which ZnO foam prepared by combustion method was dispersed in CQDs solution. It is found that the ZnO foam is constructed by a large number of ZnO nanoparticles filling in irregular, hierarchical pores. The foam structure originates from a large amounts of gas produced in the combustion process. The obtained ZnO foam/CQDs nanocomposite shows excellent photocatalytic activities on degrading Rhodamine B (RhB), Methyl orange (MO) and Methylene blue (MB) under UV and visible light irradiation. The order of degradation efficiency is MB>RhB>MO. It is attributed to the synergistic effect of several factors, including the light-trapping effect of ZnO foam, the up-converted photoluminescence behavior and photo-induced electron transfer property of CQDs.  相似文献   

6.
Green synthesis of nanoparticles is gaining importance and has been suggested as possible alternatives to chemical and physical methods. The present work reports low-cost, green synthesis of zinc oxide (ZnO) nanoparticles using 25% (w/v) of Azadirachta indica (Neem) leaf extract. The biosynthesized nanoparticles were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR). The synthesized ZnO nanoparticles were pure, predominantly spherical in shape with size ranging from 9.6 to 25.5 nm. In the present work, the biosynthesized ZnO nanoparticles have been used for antibacterial and photocatalytic applications. The antibacterial activity of characterized samples was determined using different concentrations of biosynthesized ZnO nanoparticles (20 µg/mL, 40 µg/mL, 60 µg/mL, 80 µg/mL and 100 µg/mL) against Gram-positive and Gram-negative bacteria: Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli using shake flask method. The obtained results revealed that the bacterial growth decreases with increase in concentration of biosynthesized ZnO nanoparticles. In Addition, Gram-positive bacteria seemed to be more sensitive to ZnO nanoparticles than Gram-negative bacteria. The biosynthesized ZnO nanoparticles showed photocatalytic activity under the UV light enhancing the degradation rate of methylene blue (MB), which is one of the main water-pollutant released by textile industries.  相似文献   

7.
A new type of bottom‐emission electroluminescent device is described in which a metal oxide is used as the electron‐injecting contact. The preparation of such a device is simple. It consists of the deposition of a thin layer of a metal oxide on top of an indium tin oxide covered glass substrate, followed by the solution processing of the light‐emitting layer and subsequently the deposition of a high‐workfunction (air‐stable) metal anode. This architecture allows for a low‐cost electroluminescent device because no rigorous encapsulation is required. Electroluminescence with a high brightness reaching 5700 cd m–2 is observed at voltages as low as 8 V, demonstrating the potential of this new approach to organic light‐emitting diode (OLED) devices. Unfortunately the device efficiency is rather low because of the high current density flowing through the device. We show that the device only operates after the insertion of an additional hole‐injection layer in between the light‐emitting polymer (LEP) and the metal anode. A simple model that explains the experimental results and provides avenues for further optimization of these devices is described. It is based on the idea that the barrier for electron injection is lowered by the formation of a space–charge field over the metal‐oxide–LEP interface due to the build up of holes in the LEP layer close to this interface.  相似文献   

8.
The present study involves green synthesis of ZnO nanoparticles (Nps) using aqueous Cassia fistula plant extract as fuel by solution combustion synthesis. The ZnO Nps were characterized by Powder X- ray diffraction (PXRD), UV–visible studies and Transmission electron microscopy (TEM). The Nps were evaluated for photodegradative, antimicrobial and antioxidant activities. The extract was found to contain reducing components such as polyphenols (11%) and flavonoids (12.5%). The Nps were found to have a hexagonal wurtzite structure. UV–visible absorption of ZnO Nps showed absorption band at 370 nm which can be assigned to the intrinsic band-gap absorption of ZnO due to the electron transitions from the valence band to the conduction band. TEM image confirms the formation of nanoparticles and the average crystallite sizes were found to be ~5–15 nm. Methylene blue (MB) dye was effectively degraded under UV and Sun light illumination in the presence of ZnO Nps. Significant antioxidant activity was exhibited by Nps through scavenging of 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) free radicals. Excellent bactericidal activity was shown by the Nps on Klebsiella aerogenes, Escherichia coli, Plasmodium desmolyticum and Staphylococcus aureus. Synthesis of multifunctional ZnO Nps using naturally occurring plant products has been advocated as a possible environment friendly alternative to chemical methods.  相似文献   

9.
The prevalence of healthcare‐associated infection caused by multidrug‐resistant bacteria is of critical concern worldwide. It is reported on the development of a bactericidal surface prepared by use of a simple, upscalable, two‐step dipping strategy to incorporate crystal violet and di(octyl)­phosphinic‐ acid‐capped zinc oxide nanoparticles into medical grade silicone, as a strategy to reduce the risk of infection. The material is characterized by UV–vis absorbance spectroscopy, X‐ray photoelectron spectroscopy (XPS), inductively coupled plasma‐optical emission spectroscopy (ICP‐OES) and transmission electron microscopy (TEM) and confirmed the incorporation of the ZnO nanoparticles in the polymer. The novel system proves to be a highly versatile bactericidal material when tested against both Staphylococcus aureus and Escherichia coli, key causative micro‐organisms for hospital‐acquired infection (HAI). Potent antimicrobial activity is noted under dark conditions, with a significant enhancement exhibits when the surfaces are illuminated with a standard hospital light source. This polymer has the potential to decrease the risk of HAI, by killing bacteria in contact with the surface.  相似文献   

10.
Superstrate solar cells were prepared by thermal evaporation of Cu(In,Ga)Se2 onto ZnO coated glass substrates. For the first time, photo‐conversion efficiencies above 11% were reached without the necessity of additional light soaking or forward biasing of the solar cell. This was achieved by modifying the deposition process as well as the sodium doping. Limitations of the superstrate device configuration and possible ways to overcome these were investigated by analyzing the hetero‐interface with electron microscopy and X‐ray photoemission spectroscopy measurements, combined with capacitance spectroscopy and device simulations. A device model was derived that explains how on the one hand the GaOx, which forms at the CIGSe/ZnO interface, reduces the interface recombination. On the other hand how it limits the efficiency by acting as an electron barrier at the hetero‐interface presumably because of a high density of negatively charged acceptor states like CuGa. The addition of sodium enhances the p‐type doping of the absorber but also increases the net doping within the GaOx. Hence, a trade‐off between these two effects is required. The conversion efficiency was found to decrease over time, which can be explained in our model by field‐induced diffusion of sodium cations out from the GaOx layer. The proposed device model is able to explain various effects frequently observed upon light soaking and forward biasing of superstrate devices. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The study reports the development of a solution‐processed phosphorescent tandem organic light‐emitting device (OLED) exhibiting extremely small efficiency roll‐off. The OLED comprises two light‐emitting units (LEUs) connected by an interconnecting unit and employs a thermally activated delayed fluorescence host material. One of the most difficult tasks in the fabrication of OLEDs is to form a multilayer structure without dissolving the underlayer during the coating of the upper layer. The developed host materials exhibit high tolerance to methanol. The upper‐layer adjacent to the light‐emitting layer consists of ZnO nanoparticles, which could be dispersed in methanol by improving the preparation method. This results in the successful fabrication of a solution‐processed phosphorescent tandem OLED comprising two LEUs. The maximum external quantum efficiency (EQE) of the tandem device is 22.8%, and the EQE is 21.9% even at a high luminance of 10 000 cd m?2. The suppression of efficiency roll‐off is among the best of those previously reported. Moreover, the operational stability of the tandem device is much higher compared with single‐LEU devices.  相似文献   

12.
We investigate charge transport in UV sensing devices based on organic-inorganic semiconductor composites with the metal-semiconductor-metal (MSM) structure. Composite materials of zinc oxide (ZnO) nanoparticles and poly(3-hexylthiophene) (P3HT) were prepared by drop-casting their colloidal mixture in chloroform onto low-cost interdigitated copper electrodes. The current-voltage characteristics of the devices were investigated under both dark and illuminated conditions in the UV–visible range. The highest photoresponse was observed for an optimal P3HT:ZnO ratio of 1:8 w/w in the wavelength range between 310 and 380 nm. The dynamic response was investigated by pulsing a 365 nm UV light with a long period to reveal the response time of 4 s and the recovery time of less than 1 s. The photoresponse of the materials was also investigated for a shorter period of UV pulsing, using a rotating chopper. The response time and recovery time for the short UV pulse were found to be approximately 20 m and 25 m, respectively. The dual response times should stem from the presence of two types of semiconductor materials, namely ZnO with a high electron mobility and P3HT with a moderate hole mobility. To probe the charge generation and transport mechanisms, we further investigate the photoresponse using UV pulsing under background white light of different intensities, and vice versa. The background white light was found to deteriorate the UV photoresponse of the materials. On the other hand, the background UV illumination produced an anomalous photoresponse pattern with the white light pulsing. Understanding the charge transport mechanisms for composite materials is highly important for future applications in low-cost UV sensors and tunable optoelectronic devices.  相似文献   

13.
The use of metal oxide interlayers in polymer solar cells has great potential because metal oxides are abundant, thermally stable, and can be used in flexible devices. Here, a layer‐by‐layer (LbL) protocol is reported as a facile, room‐temperature, solution‐processed method to prepare electron transport layers from commercial ZnO nanoparticles and polyacrylic acid (PAA) with a controlled and tunable porous structure, which provides large interfacial contacts with the active layer. Applying the LbL approach to bulk heterojunction polymer solar cells with an optimized ZnO layer thickness of ≈25 nm yields solar cell power‐conversion efficiencies (PCEs) of ≈6%, exceeding the efficiency of amorphous ZnO interlayers formed by conventional sputtering methods. Interestingly, annealing the ZnO/PAA interlayers in nitrogen and air environments in the range of 60–300 °C reduces the device PCEs by almost 20% to 50%, indicating the importance of conformational changes inherent to the PAA polymer in the LbL‐deposited films to solar cell performance. This protocol suggests a new fabrication method for solution‐processed polymer solar cell devices that does not require postprocessing thermal annealing treatments and that is applicable to flexible devices printed on plastic substrates.  相似文献   

14.
A simple fabrication of ZnO‐nanowire‐based device and their implementation as a pH sensor, temperature sensor, and photo detector is reported. The presented multifunctional ZnO multiple‐nanowire sensor platform contains a Au finger structure, which is realized by conventional photolithography on a SiO2 substrate. The nanowires are grown using thermal chemical vapor deposition. In order to detect the physical signals, changes in electrical signals were measured (conductance and current). For temperature sensing, the current behavior from 90 to 380 K under vacuum conditions exhibit a tunneling behavior between spaced nanowires. For photo sensing, the current response between the “on” and “off” states of light was measured when exposed to different wavelengths ranging from UV to visible light. Finally, for pH sensing the conductance was measured between a pH of 5 and 8.5. The ZnO nanowires were protected from chemical attacks by a thin layer of C4F8‐plasma‐based coating.  相似文献   

15.
Zinc oxide in the form of nanoscale materials can be regarded as one of the most important semiconductor oxides at present. However, the question of how chemical defects influence the properties of nanoscale zinc oxide materials has seldom been addressed. In this paper, we report on the introduction of defects into nanoscale ZnO, their comprehensive analysis using a combination of techniques (powder X‐ray diffraction (PXRD), X‐ray absorption spectroscopy/extended X‐ray absorption fine structure (XAS/EXAFS), electron paramagnetic resonance (EPR), magic‐angle spinning nuclear magnetic resonance (MAS‐NMR), Fourier‐transform infrared (FTIR), UV‐vis, and photoluminescence (PL) spectroscopies coupled with ab‐initio calculations), and the investigation of correlations between the different types of defects. It is seen that defect‐rich zinc oxide can be obtained under kinetically controlled conditions of ZnO formation. This is realized by the thermolysis of molecular, organometallic precursors in which ZnO is pre‐organized on a molecular scale. It is seen that these precursors form ZnO at low temperatures far from thermodynamic equilibrium. The resulting nanocrystalline ZnO is rich in defects. Depending on conditions, ZnO of high microstructural strain, high content of oxygen vacancies, and particular content of heteroatom impurities can be obtained. It is shown how the mentioned defects influence the electronic properties of the semiconductor nanoparticles.  相似文献   

16.
Novel hierarchical ZnO nanostructures, porous ZnO nanobelts, and nanoparticle chains are prepared from a precursor of synthetic bilayered basic zinc acetate (BLBZA) nanobelts. BLBZA nanobelts are obtained by a simple synthetic route under mild conditions. X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, and thermal analysis are used to characterize the BLBZA nanobelts and ZnO nanostructures. The obtained BLBZA precursor consists of a lamellar structure with two interlayer distances of 1.33 and 2.03 nm, exhibits a beltlike morphology, and has widths of 200 to 600 nm, thicknesses of 10 to 50 nm, and lengths of up to 50 μm. Refluxing an aqueous dispersion of BLBZA nanobelts at 120 °C for 12 h leads to the formation of well‐defined hierarchical ZnO nanostructures. The time‐dependent shape‐evolution process suggests that spindlelike ZnO particles form first, and then the ringlike nanosheets grow heterogeneously on the backbone of these spindles. In addition, calcination in air can remove ligand molecules and intercalated water molecules from BLBZA nanobelts, resulting in the formation of porous ZnO nanobelts and nanoparticle chains. The BLBZA nanobelts serve as templates during the transformation to form ZnO beltlike nanoparticle chains without morphological deformation. Photoluminescence results show that both the as‐synthesized hierarchical ZnO nanostructures and porous ZnO nanobelts show a narrow and sharp UV emission at 390 nm and a broad blue–green emission at above 466 nm when excited by UV light.  相似文献   

17.
Flexible large‐area organic light‐emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin‐doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are highly desired. Here an indium‐free anode is developed by a combinatorial study of zinc oxide (ZnO) and tin oxide (SnO2), both composed of earth‐abundant elements. The optimized Zn–Sn–O (ZTO) films have electron mobilities of up to 21 cm2 V?1 s?1, a conductivity of 245 S cm?1, and <5% absorptance in the visible range of the spectrum. The high electron mobilities and low surface roughness (<0.2 nm) are achieved by producing dense and void‐free amorphous layers as confirmed by transmission electron microscopy. These ZTO layers are evaluated for OLEDs in two anode configurations: i) 10 cm2 devices with ZTO/Ag/ZTO and ii) 41 cm2 devices with ZTO plus a metal grid. The ZTO layers are compatible with OLED processing steps and large‐area white OLEDs fabricated with the ZTO/grid anode show better performance than those with ITO/grid anodes. These results confirm that ZTO has the potential as an In‐free and Earth‐abundant alternative to ITO for large‐area flexible OLEDs.  相似文献   

18.
Exciton dissociation at the zinc oxide/poly(3‐hexylthiophene) (ZnO/P3HT) interface as a function of nitrogen doping of the zinc oxide, which decreases the electron concentration from approximately 1019 cm?3 to 1017 cm?3, is reported. Exciton dissociation and device photocurrent are strongly improved with nitrogen doping. This improved dissociation of excitons in the conjugated polymer is found to result from enhanced light‐induced de‐trapping of electrons from the surface of the nitrogen‐doped ZnO. The ability to improve the surface properties of ZnO by introducing a simple nitrogen dopant has general applicability.  相似文献   

19.
Most of the optical properties of nanoparticles (NPs) depend on a nonadditive effect, where there is a maximum (or optimum) value at a specific distance from the NP surface (proximity length). However, knowledge on the relation between the specific surface layer and light responsiveness of NPs is limited. In this study, surface properties of NPs are modulated by electron beam (e‐beam) treatment together with ionic control of the NP surface and dispersing media. The surface modification in terms of the proximity length is found to be critical to the selective enhancement of light absorbance in the ultraviolet‐visible (UV‐vis) and terahertz (THz) regions. In particular, the non‐temporarily electron‐activated NPs absorb short wavelength UV‐vis light, rendering them particulary advantageous for solar energy use. The control over the physical properties of general light‐responsive NPs is a new approach to designing solar‐energy‐based technologies.  相似文献   

20.
Nanostructured vertical light‐emitting diodes (V‐LEDs) with a very dense forest of vertically aligned ZnO nanowires on the surface of N‐face n‐type GaN are reported with a dramatic improvement in light extraction efficiency (~3.0×). The structural transformation (i.e., dissociation of the surface nitrogen atoms) at the nanolevel by the UV radiation and Ozone treatments contributes significantly to the initial nucleation for the nanowires growth due to the interdiffusion of Zn into GaN, evident by the scanning photoemission microscopy (SPEM), high‐resolution transmission electron microscopy (HR‐TEM), and ultraviolet photoelectron spectroscopy (UPS) measurements. This enables the growth of densely aligned ZnO nanowires on N‐face n‐type GaN. This approach shows an extreme enhancement in light extraction efficiency (>2.8×) compared to flat V‐LEDs, in good agreement with the simulation expectations (~3.01×) obtained from 3D finite‐difference time‐domain (FDTD) tools, explained by the wave‐guiding effect. The further increase (~30%) in light extraction efficiency is also observed by optimized design of nanogeometry (i.e., MgO layer on ZnO nanorods).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号