首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Organic hybrid supercapacitors that consist of a battery electrode and a capacitive electrode show greatly improved energy density, but their power density is generally limited by the poor rate capability of battery‐type electrodes. In addition, flexible organic hybrid supercapacitors are rarely reported. To address the above issues, herein an in‐plane assembled orthorhombic Nb2O5 nanorod film anode with high‐rate Li+ intercalation to develop a flexible Li‐ion hybrid capacitor (LIC) is reported. The binder‐/additive‐free film exhibits excellent rate capability (≈73% capacity retention with the rate increased from 0.5 to 20 C) and good cycling stability (>2500 times). Kinetic analyses reveal that the high rate performance is mainly attributed to the excellent in‐plane assembly of interconnected single‐crystalline Nb2O5 nanorods on the current collector, ensuring fast electron transport, facile Li‐ion migration in the porous film, and greatly reduced ion‐diffusion length. Using such a Nb2O5 film as anode and commercial activated carbon as cathode, a flexible LIC is designed. It delivers both high gravimetric and high volumetric energy/power densities (≈95.55 Wh kg?1/5350.9 W kg?1; 6.7 mW h cm?3/374.63 mW cm?3), surpassing previous typical Li‐intercalation electrode‐based LICs. Furthermore, this LIC device still keeps good electrochemical attributes even under serious bending states (30°–180°).  相似文献   

2.
V2O5 is a promising cathode material for lithium ion batteries boasting a large energy density due to its high capacity as well as abundant source and low cost. However, the poor chemical diffusion of Li+, low conductivity, and poor cycling stability limit its practical application. Herein, oxygen‐deficient V2O5 nanosheets prepared by hydrogenation at 200 °C with superior lithium storage properties are described. The hydrogenated V2O5 (H‐V2O5) nanosheets deliver an initial discharge capacity as high as 259 mAh g?1 and it remains 55% when the current density is increased 20 times from 0.1 to 2 A g?1. The H‐V2O5 electrode has excellent cycling stability with only 0.05% capacity decay per cycle after stabilization. The effects of oxygen defects mainly at bridging O(II) sites on Li+ diffusion and overall electrochemical lithium storage performance are revealed. The results reveal here a simple and effective strategy to improve the capacity, rate capability, and cycling stability of V2O5 materials which have large potential in energy storage and conversion applications.  相似文献   

3.
V2O5 nanowires exhibit an intrinsic catalytic activity towards classical peroxidase substrates such as 2,2‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) and 3,3,5,5,‐tetramethylbenzdine (TMB) in the presence of H2O2. These V2O5 nanowires show an optimum reactivity at a pH of 4.0 and the catalytic activity is dependent on the concentration. The Michaelis‐Menten kinetics of the ABTS oxidation over these nanowires reveals a behavior similar to that of their natural vanadium‐dependent haloperoxidase (V‐HPO) counterparts. The V2O5 nanowires mediate the oxidation of ABTS in the presence of H2O2 with a turnover frequency (kcat) of 2.5 × 103 s?1. The KM values of the V2O5 nanowires for ABTS oxidation (0.4 μM ) and for H2O2 (2.9 μM ) at a pH of 4.0 are significantly smaller than those reported for horseradish peroxidases (HRP) and V‐HPO indicating a higher affinity of the substrates for the V2O5 nanowire surface. Based on the kinetic parameters and similarity with vanadium‐based complexes a mechanism is proposed where an intermediate metastable peroxo complex is formed as the first catalytic step. The nanostructured vanadium‐based material can be re‐used up to 10 times and retains its catalytic activity in a wide range of organic solvents (up to 90%) making it a promising mimic of peroxidase catalysts.  相似文献   

4.
The demand for a new generation of flexible, portable, and high‐capacity power sources increases rapidly with the development of advanced wearable electronic devices. Here we report a simple process for large‐scale fabrication of self‐standing composite film electrodes composed of NiCo2O4@carbon nanotube (CNT) for supercapacitors. Among all composite electrodes prepared, the one fired in air displays the best electrochemical behavior, achieving a specific capacitance of 1,590 F g?1 at 0.5 A g?1 while maintaining excellent stability. The NiCo2O4@CNT/CNT film electrodes are fabricated via stacking NiCo2O4@CNT and CNT alternately through vacuum filtration. Lightweight, flexible, and self‐standing film electrodes (≈24.3 µm thick) exhibit high volumetric capacitance of 873 F cm?3 (with an areal mass of 2.5 mg cm?2) at 0.5 A g?1. An all‐solid‐state asymmetric supercapacitor consists of a composite film electrode and a treated carbon cloth electrode has not only high energy density (≈27.6 Wh kg?1) at 0.55 kW kg?1 (including the weight of the two electrodes) but also excellent cycling stability (retaining ≈95% of the initial capacitance after 5000 cycles), demonstrating the potential for practical application in wearable devices.  相似文献   

5.
Vanadium pentoxide (V2O5) has received considerable attention owing to its potential application in energy storage with high specific capacity (294 mAh g?1). However, the development of V2O5 cathodes has been limited by the intrinsically low electrical conductivity and slow electrochemical kinetics resulting in a significant capacity decay. In this article, in order to overcome the issues, V2O5 nanospheres and multiwalled carbon nanotubes (MWCNTs) are used to fabricate layer‐by‐layer composited paper as the cathode, which is prepared via electrostatic interaction and vacuum filtration by alternating the positively charged V2O5 nanospheres and the negatively charged terminated MWCNT solutions. As a result, the V2O5 nanospheres are closely intercalated between the adjacent MWCNT layers leading to minimize the disadvantage voids and enhance the overall conductivity of the composited electrode, which exhibits an enhanced cycling durability as well as improved rate capability.  相似文献   

6.
Layered H2Ti6O13‐nanowires are prepared using a facile hydrothermal method and their Li‐storage behavior is investigated in non‐aqueous electrolyte. The achieved results demonstrate the pseudocapacitive characteristic of Li‐storage in the layered H2Ti6O13‐nanowires, which is because of the typical nanosize and expanded interlayer space. The as‐prepared H2Ti6O13‐nanowires have a high capacitance of 828 F g?1 within the potential window from 2.0 to 1.0 V (vs. Li/Li+). An asymmetric supercapacitor with high energy density is developed successfully using H2Ti6O13‐nanowires as a negative electrode and ordered mesoporous carbon (CMK‐3) as a positive electrode in organic electrolyte. The asymmetric supercapacitor can be cycled reversibly in the voltage range of 1 to 3.5 V and exhibits maximum energy density of 90 Wh kg?1, which is calculated based on the mass of electrode active materials. This achieved energy density is much higher than previous reports. Additionally, H2Ti6O13//CMK‐3 asymmetric supercapacitor displays the highest average power density of 11 000 W kg?1. These results indicate that the H2Ti6O13//CMK‐3 asymmetric supercapacitor should be a promising device for fast energy storage.  相似文献   

7.
A novel lyotropic liquid‐crystal (LC) based assembly strategy is developed for the first time, to fabricate composite films of vanadium pentoxide (V2O5) nanobelts and graphene oxide (GO) sheets, with highly oriented layered structures. It is found that similar lamellar LC phases can be simply established by V2O5 nanobelts alone or by a mixture of V2O5 nanobelts and GO nanosheets in their aqueous dispersions. More importantly, the LC phases can be retained with any proportion of V2O5 nanobelts and GO, which allows facile optimization of the ratio of each component in the resulting films. Named VrGO, composite films manifest high electrical conductivity, good mechanical stability, and excellent flexibility, which allow them to be utilized as high performance electrodes in flexible energy storage devices. As demonstrated in this work, the VrGO films containing 67 wt% V2O5 exhibit excellent capacitance of 166 F g?1 at 10 A g?1; superior to those of the previously reported composites of V2O5 and nanocarbon. Moreover, the VrGO film in flexible lithium ion batteries delivers a high capacity of 215 mAh g?1 at 0.1 A g?1; comparable to the best V2O5 based cathode materials.  相似文献   

8.
P. Gogoi 《Semiconductors》2013,47(3):341-344
The performance of thermally deposited CdS thin film transistors doped with Ag has been reported. Ag-doped CdS thin films have been prepared using chemical method. High dielectric constant rare earth oxide Nd2O3 has been used as gate insulator. The thin film trasistors are fabricated in coplanar electrode structure on ultrasonically cleaned glass substrates with a channel length of 50 μm. The thin film transistors exhibit a high mobility of 4.3 cm2 V?1 s?1 and low threshold voltage of 1 V. The ON-OFF ratio of the thin film transistors is found as 105. The TFTs also exhibit good transconductance and gain band-width product of 1.15 × 10?3 mho and 71 kHz respectively.  相似文献   

9.
Flexible energy storage devices are critical components for emerging flexible and wearable electronics. Improving the electrochemical performance of flexible energy storage devices depends largely on development of novel electrode architectures and new systems. Here, a new class of flexible energy storage device called flexible sodium‐ion pseudocapacitors is developed based on 3D‐flexible Na2Ti3O7 nanosheet arrays/carbon textiles (NTO/CT) as anode and flexible reduced graphene oxide film (GFs) as cathode without metal current collectors or conducting additives. The NTO/CT anode with advanced electrode architectures is fabricated by directly growing Na2Ti3O7 nanosheet arrays on carbon textiles with robust adhesion through a simple hydrothermal process. The flexible GF//NTO/CT configuration achieves a high energy density of 55 Wh kg?1 and high power density of 3000 W kg?1. Taking the fully packaged flexible sodium‐ion pseudocapacitors into consideration, the maximum practical volumetric energy density and power density reach up to 1.3 mWh cm?3 and 70 mW cm?3, respectively. In addition, the flexible GF//NTO/CT device demonstrates a stable electrochemical performances with almost 100% capacitance retention under harsh mechanical deformation.  相似文献   

10.
Iron oxides are promising to be utilized in rechargeable alkaline battery with high capacity upon complete redox reaction (Fe3+ Fe0). However, their practical application has been hampered by the poor structural stability during cycling, presenting a challenge that is particularly huge when binder‐free electrode is employed. This paper proposes a “carbon shell‐protection” solution and reports on a ferroferric oxide–carbon (Fe3O4–C) binder‐free nanorod array anode exhibiting much improved cyclic stability (from only hundreds of times to >5000 times), excellent rate performance, and a high capacity of ≈7776.36 C cm?3 (≈0.4278 C cm?2; 247.5 mAh g?1, 71.4% of the theoretical value) in alkaline electrolyte. Furthermore, by pairing with a capacitive carbon nanotubes (CNTs) film cathode, a unique flexible solid‐state rechargeable alkaline battery‐supercapacitor hybrid device (≈360 μm thickness) is assembled. It delivers high energy and power densities (1.56 mWh cm?3; 0.48 W cm?3/≈4.8 s charging), surpassing many recently reported flexible supercapacitors. The highest energy density value even approaches that of Li thin‐film batteries and is about several times that of the commercial 5.5 V/100 mF supercapacitor. In particular, the hybrid device still maintains good electrochemical attributes in cases of substantially bending, high mechanical pressure, and elevated temperature (up to 80 °C), demonstrating high environmental suitability.  相似文献   

11.
Developing materials that possess high electrical conductivities (σ) and Seebeck coefficients (S), low thermal conductivities (κ), and excellent mechanical properties is important to realize practical thermoelectric (TE) devices. Here, 3D hierarchical architectures consisting of hybrid molybdenum disulfide (MoS2)/carbon nanotubes (CNTs) films are fabricated with the goal of increasing σ and decreasing κ. In these films, perpendicularly orientated CNTs interpenetrate restacked MoS2 layers to form a 3D architecture, which increases the specific surface area and charge concentration. The MoS2/20 wt% CNTs film shows high σ (235 ± 5 S?cm?1), high S (68 ± 2 µV?K?1), and low κ (19 ± 2 mW?m?1?K?1). The corresponding figure of merit (ZT) reaches 0.17 at room temperature, which is 65 times higher than that of pure MoS2 film. In addition, the MoS2/20 wt% CNTs film shows a tensile stress of 38.9 MPa, which is an order of magnitude higher than that of a control MoS2 film. Using the MoS2/CNTs film as an active material and human body as a heat source, a flexible, wearable TE wristband is fabricated by weaving seven strips of the 3D porous MoS2/CNTs film. The wristband achieves an output voltage of 2.9 mV and corresponding power output of 0.22 µW at a temperature gradient of about 5 K.  相似文献   

12.
Binary metal oxides (such as NiCo2O4) are regarded as attractive electrode materials for advanced energy storage devices since they offer more electrochemical activity and higher capacity than monometal oxide. However, the volume expansion and low electronic conductivity are the main bottleneck seriously hindering their application. To overcome these barriers, a novel strategy that introduces a bimetallic oxynitride layer (NiCoON) with oxygen vacancy to the surface of NiCo2O4 nanowires as an anode for Li‐ion capacitors (LICs) is proposed. The oxygen vacancy on the surface and the modulation of multiple valence states are investigated by the electron paramagnetic resonance, X‐ray photoelectron spectroscopy characterization, and first‐principles calculation. Benefiting from the merits of substantially improved electrical conductivity and increased concentration of active sites, the optimized NiCoON electrode delivers remarkable capacity (1855 mAh g?1 at 0.2 A g?1) and rate performance. The LIC device assembled by NiCoON anodes and N‐doped carbon nanowire cathodes delivers excellent rate capability, high energy density (148.5 Wh kg?1), and outstanding power density (30 kW kg?1). This study provides a new pathway for developing bimetallic oxides with an improved performance in electrochemical energy storage, conversion fields, and beyond.  相似文献   

13.
Crystalline water-free β-phase Ca0.14V2O5 is reported for the first time as a viable cathode material for calcium-ion batteries (CIBs). In contrast to layered α-V2O5 and δ-CaxV2O5·nH2O, which have limited capacity, the β-phase delivers a reversible capacity of ≈247 mAh g−1, which corresponds to the insertion/extraction of Ca2+ between Ca0.14V2O5 and Ca1.0V2O5. The process of Ca2+ insertion process and the accompanying structural relaxation are theoretically and experimentally verified. The initial insertion of Ca2+ into Ca0.14V2O5 causes a slight shift of oxygen atoms surrounding hepta-coordination sites, creating penta-coordinated sites that are then partially filled up to Ca0.33V2O5. Further insertion occurs through the stepwise occupation of up to 50% of neighboring hexa- and tetra-coordination sites to form Ca0.67V2O5 and Ca1.0V2O5, respectively. The rearrangement of oxygen atoms in Ca0.14V2O5 also minimizes dimensional changes, leading to high cyclic stability during repeated charge/discharge cycles. The remarkable electrochemical performance of full cells containing a Ca0.14V2O5 cathode and a K metal anode in Ca2+/K+ hybrid electrolytes, is also demonstrated, thanks to the inertness of K+ insertion into Ca0.14V2O5 and the absence of calcium plating/stripping. The cyclic stability and high capacity of Ca0.14V2O5 is not compromised in hybrid electrolytes, making it a viable CIB cathode.  相似文献   

14.
Cerium doped V2O5 thin films were prepared by the sol−gel process. X-ray diffraction analysis revealed the phase transition from α-V2O5 orthorhombic to β-V2O5 tetragonal structure by annealing at 400 °C. The SEM and AFM images revealed that annealing temperature changed the surface morphology of the V2O5 films from fiber like wrinkle network to elongated sheets. Also, the particle shape was significantly influenced by Ce doping and a nanorod-like morphology was formed at 1.5 mol% Ce−doped V2O5. Power spectral density analysis indicated that surface roughness and fractal dimension of β−V2O5 increase by Ce doping. Optical measurement showed that the band gap narrowing (from 2.68 to 2.28 eV) occurred when the annealing temperature and dopant concentration increased. The variation of activation energy of the films was explained based on the small polaron hopping mechanism. The α−V2O5 film showed enhanced lithium−ion storage capacity compared to pristine β−V2O5 film and 1 mol% Ce−doped α−V2O5 thin film revealed the best ion storage capacity (Qa=207.19 mC/cm2, Imax=4.13 mA/cm2 at scan rate of ν=20 mV/s).  相似文献   

15.
Freestanding carbon‐based hybrids, specifically carbon nanotube@3D graphene (CNTs@3DG) hybrid, are of great interest in electrochemical energy storage. However, the large holes (about 400 µm) in the commonly used 3D graphene foams (3DGF) constitute as high as 90% of the electrode volume, resulting in a very low loading of electroactive materials that is electrically connected to the carbon, which makes it difficult for flexible supercapacitors to achieve high gravimetric and volumetric energy density. Here, a hierarchically porous carbon hybrid is fabricated by growing 1D CNTs on 3D graphene aerogel (CNTs@3DGA) using a facile one‐step chemical vapor deposition process. In this architecture, the 3DGA with ample interconnected micrometer‐sized pores (about 5 µm) dramatically enhances mass loading of electroactive materials comparing with 3DGF. An optimized all‐solid‐state asymmetric supercapacitor (AASC) based on MnO2@CNTs@3DGA and Ppy@CNTs@3DGA electrodes exhibits high volumetric energy density of 3.85 mW h cm?3 and superior long‐term cycle stability with 84.6% retention after 20 000 cycles, which are among the best reported for AASCs with both electrodes made of pseudocapacitive electroactive materials.  相似文献   

16.
A facile one‐step hydrothermal method is developed for large‐scale production of well‐designed flexible and free‐standing Co3O4/reduced graphene oxide (rGO)/carbon nanotubes (CNTs) hybrid paper as an electrode for electrochemical capacitors. Densely packed unique Co3O4 monolayer microsphere arrays uniformly cover the surface of the rGO/CNTs film. The alkaline hydrothermal treatment leads to not only the deposition of Co3O4 microspheres array, but also the reduction of the GO sheets at the same time. The unique hybrid paper is evaluated as an electrode for electrochemical capacitors without any ancillary materials. It is found that the obtained hybrid flexible paper, composed of Co3O4 microsphere array anchored to the underling conductive rGO/CNTs substrate with robust adhesion, is able to deliver high specific capacitance with excellent electrochemical stability even at high current densities, suggesting its promising application as an efficient electrode material for electrochemical capacitors.  相似文献   

17.
Nanowire aerogels (NWAs) are highly versatile and used in many applications. However, most synthesized NWAs are composed of single components that may produce unsatisfactory aggregated performance in mechanical strength, conductivity, and electrochemistry. To address this issue, a reticulate dual‐nanowire aerogel (rDNWA) composed of FeS2 nanowires and carbon nanotubes (CNTs) via a simple solvothermal method is synthesized. The rDNWA possesses excellent compressibility (modulus of 1.32 MPa), good conductivity (0.65 S cm?1), and high porosity (>98%). It can be applied as a high‐performance strain sensor with good sensitivity (Gauge Factor = 1.69) and enhanced stability. It can be densified to yield a high areal capacity of 10.0 mAh cm?2 and a high mass loading of 14.4 mg cm?2 after 100 cycles. As a freestanding anode for lithium ion battery (LIB), it exhibits a high specific mass capacity of 1031 mAh g?1 after 100 cycles at a current density of 100 mA g?1 and retains it to 729 mAh g?1 at a current density of 500 mA g?1 after 400 cycles. The outstanding overall performance of the hybrid aerogel is derived from the synergistic effect of intertwined CNTs and FeS2 nanowires and can be extended to fabricate NWAs with novel multifunctional capabilities.  相似文献   

18.
An ultrathin V2O5 layer was electrodeposited by cyclic voltammetry on a self‐standing carbon‐nanofiber paper, which was obtained by stabilization and heat‐treatment of an electrospun polyacrylonitrile (PAN)‐based nanofiber paper. A very‐high capacitance of 1308 F g?1 was obtained in a 2 M KCl electrolyte when the contribution from the 3 nm thick vanadium oxide was considered alone, contributing to over 90% of the total capacitance (214 F g?1) despite the low weight percentage of the V2O5 (15 wt%). The high capacitance of the V2O5 is attributed to the large external surface area of the carbon nanofibers and the maximum number of active sites for the redox reaction of the ultrathin V2O5 layer. This ultrathin layer is almost completely accessible to the electrolyte and thus results in maximum utilization of the oxide (i.e., minimization of dead volume). This hypothesis was experimentally evaluated by testing V2O5 layers of different thicknesses.  相似文献   

19.
Iron oxide is promising for use in aqueous energy storage devices due to the high capacity, but one of the most challenging problems is cycling instability within the large potential window that results from the complete quasi‐conversion reaction. Herein, a conformal surface coating strategy toward iron oxide via atomic layer deposition (ALD) is presented and an Fe3O4@TiO2 core–shell nanorod array anode is reported that exhibits remarkable cycling performance exceeding 30 000 times within a wide potential window in neutral lithium salt electrolyte. ALD offers a uniform and precisely controllable TiO2 shell that not only buffers the inner volume expansion of Fe3O4, but also contributes extra capacity through Li+ intercalation/de‐intercalation and helps to alleviate the water electrolysis. Furthermore, by pairing with a pseduocapacitive cathode of V2O3@carbon and using a hydrogel electrolyte of PVA‐LiCl, a unique flexible quasi‐solid‐state hybrid supercapacitor can be assembled. With a high voltage of 2.0 V, the device delivers high volumetric energy and power densities (2.23 mWh cm?3, 1090 mW cm?3), surpassing many recently reported flexible supercapacitors. This work highlights the importance of ALD conformal multifunctional shell to instable nanoarray electrodes in aqueous electrolytes and brings new opportunities to design advanced aqueous hybrid energy storage devices.  相似文献   

20.
Rechargeable Li batteries based on group VIA element cathodes, such as tellurium, are emerging due to their capability to provide equivalent theoretical volumetric capacity density to O and S, as well as an improved activity to react with Li. Herein, bifunctional and elastic carbon nanotube (CNT) aerogel is fabricated to combine with Te nanowires, yielding two types of binder/collector‐free Te cathodes to assemble Li‐Te batteries. The CNTs with high electronic conductivity and hollow porous structure enable stable electric contact and fast transportation of Li+, while trapping Te and Li2Te in its network, triggering fast and stable Li‐Te electrochemistry. Both cathodes are also provided with fine compressibility, helping to buffer their volume changes during lithiation/delithiation and improving electrode integrity. Both cathodes deliver high specific capacity, fine cycling stability, and favorable high‐rate capability, proving their competence in building high‐energy rechargeable Li‐ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号