首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomically layered 2D crystals such as transitional metal dichalcogenides (TMDs) provide an enchanting landscape for optoelectronic applications due to their unique atomic structures. They have been most intensively studied with 2H phase for easy fabrication and manipulation. 1T phase material could possess better electrocatalytic and photocatalytic properties, while they are difficult to fabricate. Herein, for the first time, the atomically layered 1T phase tin diselenides (SnSe2, III‐IV compound) are successfully exfoliated by the method of mechanical exfoliation from bulk single crystals, grown via the chemical vapor transport method without transport gas. More attractively, the high performance atomically layered SnSe2 photodetector has been first successfully fabricated, which displays a good responsivity of 0.5 A W?1 and a fast photoresponse down to ≈2 ms at room temperature, one of the fastest response times among all types of 2D photodetectors. It makes SnSe2 a promising candidate for high performance optoelectronic devices. Moreover, high performance bilayered SnSe2 field‐effect transistors are also demonstrated with a mobility of ≈4 cm2 V?1 s?1 and an on/off ratio of 103 at room temperature. The results demonstrate that few layered 1T TMD materials are relatively stable in air and can be exploited for various electrical and optical applications.  相似文献   

2.
Here, novel ferroelectric ceramics of (0.95 ? x)BiScO3xPbTiO3‐0.05Pb(Sn1/3Nb2/3)O3 (BS‐xPT‐PSN) of complex perovskite structure are reported with compositions near the morphotropic phase boundary (MPB), and which exhibit a piezoelectric coefficient d33 = 555 pC N?1, a large‐signal coefficient d 33 ? ≈ 1200 pm V?1 at room temperature, and a high Curie temperature TC of 408 °C. More interestingly, this ternary system exhibits a giant and stable piezoelectric response at 200 °C with a large‐signal d 33 ? ≈ 2500 pm V?1, matching that of the costly relaxor‐based piezoelectric single crystals at room temperature. The mechanisms of such giant piezoelectricity and its characteristic temperature dependence are attributed to the spontaneous polarization rotation and extension under an electric field and the MPB‐related phase transition. The findings reveal that the BS‐xPT‐PSN ceramics constitute a new family of high‐performance piezoelectric materials suitable for electromechanical transducers that can be operated at high temperatures (at 200 °C, or higher).  相似文献   

3.
PdSe2, an emerging 2D material with a novel anisotropic puckered pentagonal structure, has attracted growing interest due to its layer‐dependent electronic bandgap, high carrier mobility, and good air stability. Herein, a detailed Raman spectroscopic study of few‐layer PdSe2 (two to five layers) under the in‐plane uniaxial tensile strain up to 3.33% is performed. Two of the prominent PdSe2 Raman peaks are influenced differently depending on the direction of strain application. The A g 1 mode redshifts more than the A g 3 mode when the strain is applied along the a‐axis of the crystal, while the A g 3 mode redshifts more than the A g 1 mode when the strain is applied along the b‐axis. Such an anisotropic phonon response to strain indicates directionally dependent mechanical and thermal properties of PdSe2 and also allows the identification of the crystal axes. The results are further supported using first‐principles density‐functional theory. Interestingly, the near‐zero Poisson’s ratios for few‐layer PdSe2 are found, suggesting that the uniaxial tensile strain can easily be applied to few‐layer PdSe2 without significantly altering their dimensions at the perpendicular directions, which is a major contributing factor to the observed distinct phonon behavior. The findings pave the way for further development of 2D PdSe2‐based flexible electronics.  相似文献   

4.
The very recently rediscovered group‐10 transition metal dichalcogenides (TMDs) such as PtS2 and PtSe2, have joined the 2D material family as potentially promising candidates for electronic and optoeletronic applications due to their theoretically high carrier mobility, widely tunable bandgap, and ultrastability. Here, the first exploration of optoelectronic application based on few‐layered PtS2 using h‐BN as substrate is presented. The phototransistor exhibits high responsivity up to 1.56 × 103 A W?1 and detectivity of 2.9 × 1011 Jones. Additionally, an ultrahigh photogain ≈2 × 106 is obtained at a gate voltage V g = 30 V, one of the highest gain among 2D photodetectors, which is attributed to the existence of trap states. More interestingly, the few‐layered PtS2 phototransistor shows a back gate modulated photocurrent generation mechanism, that is, from the photoconductive effect dominant to photogating effect dominant via tuning the gate voltage from the OFF state to the ON state. Such good properties combined with gate‐controlled photoresponse of PtS2 make it a competitive candidate for future 2D optoelectronic applications.  相似文献   

5.
The transitionmetal dichalcogenides‐based phototransistors have demonstrated high transport mobility but are limited to poor photoresponse, which greatly blocks their applications in optoelectronic fields. Here, light sensitive PbS colloidal quantum dots (QDs) combined with 2D WSe2 to develop hybrid QDs/2D‐WSe2 phototransistors for high performance and broadband photodetection are utilized. The device shows a responsivity up to 2 × 105 A W–1, which is orders of magnitude higher than the counterpart of individual material‐based devices. The detection spectra of hybrid devices can be extended to near infrared similar to QDs' response. The high performance of hybrid 0D‐2D phototransistor is ascribed to the synergistic function of photogating effect. PbS QDs can efficiently absorb the input illumination and 2D WSe2 supports a transport expressway for injected photocarriers. The hybrid phototransistors obtain a specific detectivity over 1013 Jones in both ON and OFF state in contrast to the depleted working state (OFF) for other reported QDs/2D phototransistors. The present device construction strategy, photogating enhanced performance, and robust device working conditions contain high potential for future optoelectronic devices.  相似文献   

6.
Carbon based materials as one promising cathode to accommodate the insoluble and insulating discharge products (Li2O2) for lithium oxygen (Li‐O2) batteries have attracted great attention due to their large energy density store ability compared with the other carbon‐free cathodes. However, the side reaction occurring at carbon/Li2O2 interfaces hinders their large‐scale application in Li‐O2 batteries. Herein, a simple and cost‐effective strategy is developed for the growth of core‐shell‐like Co/CoO nanoparticles on 3D graphene‐wrapped carbon foam using 3D melamine foam as the initial backbone. This unique 3D hierarchical carbonized melamine foam‐graphene‐Co/CoO hybrid (CMF‐G‐Co/CoO) with a continuous conductive network and elastic properties is used as binder‐free oxygen electrode for Li‐O2 batteries. Electrochemical and structural measurements show that a synergistic effect is observed between Co/CoO and graphene, where Li2O2 grows on the Co/CoO surfaces instead of the carbon surfaces at the initial discharge state (500 mAh ), indicating the reduced carbon/Li2O2 interfaces and alleviative side reactions during the electrochemical process. Importantly, the CMF‐G‐Co/CoO electrode can achieve greatly improved cycle life over the electrode without aid of the Co/CoO. Furthermore, it delivers a large capacity of ≈7800 mAh and outstanding rate capability, exhibiting the great potential for the application in Li‐O2 batteries.  相似文献   

7.
Distorted octahedral T′ phase of MoTe2 has recently attracted significant interest due to its predicted topological states and novel charge transport properties. Here, we report a nondestructive method for determining the crystal orientation of few‐layer T′‐MoTe2 flakes by polarized Raman spectroscopy. The experimentally observed Raman modes are assigned to eigenmodes of vibrations predicted by density functional theory calculations. Polarized Raman measurements reveal four distinct types of angle‐dependent intensity variations. From group theory, it can be deduced that the intensity of the Bg mode reaches a maximum in the configuration when the polarization vector of the incident light is either parallel or orthogonal to the metal–metal zigzag chain direction. The intensity variation of the Bg mode cannot be used to unambiguously determine the crystal orientation. Using electron diffraction analysis, it is demonstrated that the intensity of the Ag mode at around 162 cm?1 reaches a maximum when the polarization vector of the incident light is parallel to the metal–metal chain direction in the configuration. Furthermore, a simple method is proposed for identifying crystal orientation in nonpolarized Raman spectroscopy.  相似文献   

8.
The gecko adhesive system has attracted significant attention since the discovery that van der Waals interactions, which are always present between surfaces, are predominantly responsible for their adhesion. The unique anisotropic frictional–adhesive capabilities of the gecko adhesive system originate from complex hierarchical structures and just as importantly, the anisotropic articulation of the structures. Here, by cleverly engineering asymmetric polymeric microstructures, a reusable switchable gecko‐like adhesive can be fabricated yielding steady high adhesion ( ≈ 1.25 N/cm2) and friction ( ≈ 2.8 N/cm2) forces when actuated for “gripping”, yet release easily with minimal adhesion ( ≈ 0.34 N/cm2) and friction (≈ 0.38 N/cm2) forces during detachment or “releasing”, over multiple attachment/detachment cycles, with a relatively small normal preload of 0.16 N/cm2 to initiate the adhesion. These adhesives can also be used to reversibly suspend weights from vertical (e.g., walls), and horizontal (e.g., ceilings) surfaces by simultaneously and judiciously activating anisotropic friction and adhesion forces. This design opens the way for new gecko‐like adhesive surfaces and articulation mechanisms that do not rely on intensive nanofabrication in order to recover the anisotropic tribological property of gecko adhesive pads, albeit with lower adhesive forces compared to geckos.  相似文献   

9.
2D porous polymers with a planar architecture and high specific surface area have significant applications potential, such as for photocatalysis, electrochemical catalysis, gas storage and separation, and sensing. Such 2D porous polymers have generally been classified as 2D metal–organic frameworks, 2D covalent organic frameworks, graphitic carbon nitride, graphdiyne, and sandwich‐like porous polymer nanosheets. Among these, 2D porous polymers with sp2‐hybridized carbon ( C s p 2 ) bonding are an emerging field of interest. Compared with 2D porous polymers linked by B? O, C?N, or C?C bonds, C s p 2 ‐linked 2D porous polymers exhibit extended electron delocalization resulting in unique optical/electrical properties, as well as high chemical/photostability and tunable electrochemical performance. Furthermore, such 2D porous polymers are one of the best precursors for the fabrication of 2D porous carbon materials and carbon skeletons with atomically dispersed transition‐metal active sites. Herein, rational synthetic approaches for 2D porous polymers with C s p 2 bonding are summarized. Their current practical photoelectric applications, including for gas separation, luminescent sensing and imaging, electrodes for batteries and supercapacitors, and photocatalysis are also discussed.  相似文献   

10.
In recent years, 2D layered materials have been considered as promising photon absorption channel media for next‐generation phototransistors due to their atomic thickness, easily tailored single‐crystal van der Waals heterostructures, ultrafast optoelectronic characteristics, and broadband photon absorption. However, the photosensitivity obtained from such devices, even under a large bias voltage, is still unsatisfactory until now. In this paper, high‐sensitivity phototransistors based on WS2 and MoS2 are proposed, designed, and fabricated with gold nanoparticles (AuNPs) embedded in the gate dielectric. These AuNPs, located between the tunneling and blocking dielectric, are found to enable efficient electron trapping in order to strongly suppress dark current. Ultralow dark current (10?11 A), high photoresponsivity (1090 A W?1), and high detectivity (3.5 × 1011 Jones) are obtained for the WS2 devices under a low source/drain and a zero gate voltage at a wavelength of 520 nm. These results demonstrate that the floating‐gate memory structure is an effective configuration to achieve high‐performance 2D electronic/optoelectronic devices.  相似文献   

11.
2D transition metal dichalcogenides are emerging with tremendous potential in many optoelectronic applications due to their strong light–matter interactions. To fully explore their potential in photoconductive detectors, high responsivity is required. Here, high responsivity phototransistors based on few‐layer rhenium disulfide (ReS2) are presented. Depending on the back gate voltage, source drain bias and incident optical light intensity, the maximum attainable photoresponsivity can reach as high as 88 600 A W?1, which is a record value compared to other individual 2D materials with similar device structures and two orders of magnitude higher than that of monolayer MoS2. Such high photoresponsivity is attributed to the increased light absorption as well as the gain enhancement due to the existence of trap states in the few‐layer ReS2 flakes. It further enables the detection of weak signals, as successfully demonstrated with weak light sources including a lighter and limited fluorescent lighting. Our studies underscore ReS2 as a promising material for future sensitive optoelectronic applications.  相似文献   

12.
PtCoFe nanowires with different alloying compositions are chemically prepared and acted as counter electrodes (CEs) in dye‐sensitized solar cells (DSSCs) with Ru(II)‐based dyes. Due to their superior reduction activity, PtCoFe nanowires with rich (111) facets enhance the performance of DSSCs. Hence, N719 DSSCs with PtCoFe nanowires, respectively, produce better power conversion efficiency (PCE) of 8.10% for Pt33Co24Fe43 nanowire, 8.33% for Pt74Co12Fe14 nanowire, and 9.26% for Pt49Co23Fe28 nanowire in comparison to the PCE of Pt CE (7.32%). Further, the PRT‐22 DSSC with Pt49Co23Fe28 nanowire exhibits a maximum PCE of 12.29% with a certificated value of 12.0%, which surpass the previous PCE record of the DSSCs with Ru(II)‐based dyes. The photovoltaic and electrochemical results reveal the composition‐dependent activity along with a volcano‐shaped trend in the I?/ redox reaction. Theoretical work on the adsorption energies of I2, the desorption energies of I?, and the corresponding absolute energy demonstrates that the reduction activity followed in the order of Pt49Co23Fe28(111) plane > Pt74Co12Fe14(111) plane > Pt33Co24Fe43(111) plane, proving Pt49Co23Fe28 nanowire to be a superior cathode material for DSSCs.  相似文献   

13.
Large‐scale production of hydrogen from water‐alkali electrolyzers is impeded by the sluggish kinetics of hydrogen evolution reaction (HER) electrocatalysts. The hybridization of an acid‐active HER catalyst with a cocatalyst at the nanoscale helps boost HER kinetics in alkaline media. Here, it is demonstrated that 1T–MoS2 nanosheet edges (instead of basal planes) decorated by metal hydroxides form highly active edge 1T‐MoS 2 / edge Ni ( OH ) 2 heterostructures, which significantly enhance HER performance in alkaline media. Featured with rich edge 1T‐MoS 2 / edge Ni ( OH ) 2 sites, the fabricated 1T–MoS2 QS/Ni(OH)2 hybrid (quantum sized 1T–MoS2 sheets decorated with Ni(OH)2 via interface engineering) only requires overpotentials of 57 and 112 mV to drive HER current densities of 10 and 100 mA cm?2, respectively, and has a low Tafel slope of 30 mV dec?1 in 1 m KOH. So far, this is the best performance for MoS2‐based electrocatalysts and the 1T–MoS2 QS/Ni(OH)2 hybrid is among the best‐performing non‐Pt alkaline HER electrocatalysts known. The HER process is durable for 100 h at current densities up to 500 mA cm?2. This work not only provides an active, cost‐effective, and robust alkaline HER electrocatalyst, but also demonstrates a design strategy for preparing high‐performance catalysts based on edge‐rich 2D quantum sheets for other catalytic reactions.  相似文献   

14.
Molybdenum disulfide (MoS2) is a layered semiconducting material with a tunable bandgap that is promising for the next generation nanoelectronics as a substitute for graphene or silicon. Despite recent progress, the synthesis of high‐quality and highly uniform MoS2 on a large scale is still a challenge. In this work, a temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films on SiO2 is presented. A variety of physical characterization techniques is employed to investigate the structural quality of the material. The film quality is shown to be similar to geological MoS2, if synthesized at sufficiently high temperatures (1050 °C). In addition, a highly uniform growth of trilayer MoS2 with an unprecedented uniformity of ±0.07 nm over a large area (> 10 cm2) is achieved. These films are used to fabricate field‐effect transistors following a straightforward wafer‐scale UV lithography process. The intrinsic field‐effect mobility is estimated to be about cm2 V–1 s–1 and compared to previous studies. These results represent a significant step towards application of MoS2 in nanoelectronics and sensing.  相似文献   

15.
2D layered materials are an emerging class of low‐dimensional materials with unique physical and structural properties and extensive applications from novel nanoelectronics to multifunctional optoelectronics. However, the widely investigated 2D materials are strongly limited in high‐performance electronics and ultrabroadband photodetectors by their intrinsic weaknesses. Exploring the new and narrow bandgap 2D materials is very imminent and fundamental. A narrow‐bandgap noble metal dichalcogenide (PtS2) is demonstrated in this study. The few‐layer PtS2 field‐effect transistor exhibits excellent electronic mobility exceeding 62.5 cm2 V?1 s?1 and ultrahigh on/off ratio over 106 at room temperature. The temperature‐dependent conductance and mobility of few‐layer PtS2 transistors show a direct metal‐to‐insulator transition and carrier scattering mechanisms, respectively. Remarkably, 2D PtS2 photodetectors with broadband photodetection from visible to mid‐infrared and a fast photoresponse time of 175 µs at 830 nm illumination for the first time are obtained at room temperature. Our work opens an avenue for 2D noble‐metal dichalcogenides to be applied in high‐performance electronic and mid‐infrared optoelectronic devices.  相似文献   

16.
Atomically thin 2D materials have received intense interest both scientifically and technologically. Bismuth oxyselenide (Bi2O2Se) is a semiconducting 2D material with high electron mobility and good stability, making it promising for high‐performance electronics and optoelectronics. Here, an ambient‐pressure vapor–solid (VS) deposition approach for the growth of millimeter‐size 2D Bi2O2Se single crystal domains with thicknesses down to one monolayer is reported. The VS‐grown 2D Bi2O2Se has good crystalline quality, chemical uniformity, and stoichiometry. Field‐effect transistors (FETs) are fabricated using this material and they show a small contact resistivity of 55.2 Ω cm measured by a transfer line method. Upon light irradiation, a phototransistor based on the Bi2O2Se FETs exhibits a maximum responsivity of 22 100 AW?1, which is a record among currently reported 2D semiconductors and approximately two orders of magnitude higher than monolayer MoS2. The Bi2O2Se phototransistor shows a gate tunable photodetectivity up to 3.4 × 1015 Jones and an on/off ratio up to ≈109, both of which are much higher than phototransistors based on other 2D materials reported so far. The results of this study indicate a method to grow large 2D Bi2O2Se single crystals that have great potential for use in optoelectronic applications.  相似文献   

17.
Two dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted interest for their compelling nanoscale new properties and numerous potential applications including fast optoelectronic devices, ultrathin photovoltaics, and high‐performance catalysts. Large‐scale growth of uniform TMDC materials is essential for investigating their physics and for their integration into devices. However, the wafer scale deposition of TMDCs on arbitrary nonselective substrates is still beyond the current state‐of‐the‐art. In this article, a method to synthesize layered TMDCs (MoS2 and WS2) at the wafer‐scale by sulfurization of transition metal ions (Mo5+ and W6+) in a gelatin template (metallo‐hydrogel) is reported. This process is adaptable to versatile substrates, including amorphous silicon oxide, high‐temperature quartz, and silicon. Although the products are nominally few layer materials, direct band photoluminescent (≈1.8 eV), similar to single‐ or decoupled multilayer MoS2 is observed. Finally, the solution‐based deposition enables contact printing of TMDC channels to be useable for device applications including thin film transistors with printed silver contacts using the same process.  相似文献   

18.
Epitaxial tetragonal 425 and 611 nm thick Pb(Zr0.45Ti0.55)O3 (PZT) films are deposited by pulsed laser deposition on SrRuO3‐coated (100) SrTiO3 24° tilt angle bicrystal substrates to create a single PZT grain boundary with a well‐defined orientation. On either side of the bicrystal boundary, the films show square hysteresis loops and have dielectric permittivities of 456 and 576, with loss tangents of 0.010 and 0.015, respectively. Using piezoresponse force microscopy (PFM), a decrease in the nonlinear piezoelectric response is observed in the vicinity (720–820 nm) of the grain boundary. This region represents the width over which the extrinsic contributions to the piezoelectric response (e.g., those associated with the domain density/configuration and/or the domain wall mobility) are influenced by the presence of the grain boundary. Transmission electron microscope (TEM) images collected near and far from the grain boundary indicate a strong preference for (101)/(01) type domain walls at the grain boundary, whereas (011)/(01) and (101)/(01) are observed away from this region. It is proposed that the elastic strain field at the grain boundary interacts with the ferro‐electric/elastic domain structure, stabilizing (101)/(01) rather than (011)/(01) type domain walls, which inhibits domain wall motion under applied field and decreases non‐linearity.  相似文献   

19.
SnSe has attracted much attention due to the excellent thermoelectric (TE) properties of both p‐ and n‐type single crystals. However, the TE performance of polycrystalline SnSe is still low, especially in n‐type materials, because SnSe is an intrinsic p‐type semiconductor. In this work, a three‐step doping process is employed on polycrystalline SnSe to make it n‐type and enhance its TE properties. It is found that the Sn0.97Re0.03Se0.93Cl0.02 sample achieves a peak ZT value of ≈1.5 at 798 K, which is the highest ZT reported, to date, in n‐type polycrystalline SnSe. This is attributed to the synergistic effects of a series of point defects: V Se .. , Cl Se . , V Sn , , , Re Sn × , Re 0 . In those defects, the V Se .. compensates for the intrinsic Sn vacancies in SnSe, the Cl Se . acts as a donor, the V Sn , , acts as an acceptor, all of which contribute to optimizing the carrier concentration. Rhenium (Re) doping surprisingly plays dual‐roles, in that it both significantly enhances the electrical transport properties and largely reduces the thermal conductivity by introducing the point defects, Re Sn × , Re 0 . The method paves the way for obtaining high‐performance TE properties in SnSe crystals using multipoint‐defect synergy via a step‐by‐step multielement doping methodology.  相似文献   

20.
Monolayer 2D transition metal dichalcogenides (TMDCs) have shown great promise for optoelectronic applications due to their direct bandgaps and unique physical properties. In particular, they can possess photoluminescence quantum yields (PL QY) approaching unity at the ultimate thickness limit, making their application in light‐emitting devices highly promising. Here, large‐area WS2 grown via chemical vapor deposition is synthesized and characterized for visible (red) light‐emitting devices. Detail optical characterization of the synthesized films is performed, which show peak PL QY as high as 12%. Electrically pumped emission from the synthetic WS2 is achieved utilizing a transient‐mode electroluminescence device structure, which consists of a single metal–semiconductor contact and alternating gate fields to achieve bipolar emission. Utilizing this aforementioned structure, a centimeter‐scale ( ≈ 0.5 cm2) visible (640 nm) display is demonstrated, fabricated using TMDCs to showcase the potential of this material system for display applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号