首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The alteration in protein conformation not only affects the performance of its biological functions, but also leads to a variety of protein‐mediated diseases. Developing a sensitive strategy for protein detection and monitoring its conformation changes is of great significance for the diagnosis and treatment of protein conformation diseases. Herein, a plasmon‐enhanced fluorescence (PEF) sensor is developed, based on an aggregation‐induced emission (AIE) molecule to monitor conformational changes in protein, using prion protein as a model. Three anthracene derivatives with AIE characteristics are synthesized and a water‐miscible sulfonate salt of 9,10‐bis(2‐(6‐sulfonaphthalen‐2‐yl)vinyl)anthracene (BSNVA) is selected to construct the PEF–AIE sensor. The sensor is nearly non‐emissive when it is mixed with cellular prion protein while emits fluorescence when mixed with disease‐associated prion protein (PrPSc). The kinetic process of conformational conversion can be monitored through the fluorescence changes of the PEF–AIE sensor. By right of the amplified fluorescence signal, this PEF–AIE sensor can achieve a detection limit 10 pM lower than the traditional AIE probe and exhibit a good performance in human serum sample. Furthermore, molecular docking simulations suggest that BSNVA tends to dock in the β‐sheet structure of PrP by hydrophobic interaction between BSNVA and the exposed hydrophobic residues.  相似文献   

2.
An endocrine disruptor (ED) is a type of xenobiotic compound that can cause serious diseases related to the estrous cycle, as well as various types of cancer. At low ED concentrations, estrogen receptors may respond as they would under physiological conditions. In this work, aptamer‐functionalized multidimensional conducting‐polymer (3‐carboxylate polypyrrole) nanoparticles (A_M_CPPyNPs) are fabricated for use in an FET sensor to detect bisphenol A (BPA). The multidimensional system, M_CPPyNPs, is first produced by means of dual‐nozzle electrospray of pristine CPPyNPs and vapor deposition polymerization of additional conducting polymer. The M_CPPyNPs are then immobilized on an amine‐functionalized (–NH2) interdigitated‐array electrode substrate, through the formation of covalent bonds with amide groups (–CONH). The amine‐functionalized BPA‐binding aptamer is then introduced in the same way as that for M_CPPyNP immobilization. The resulting A_M_CPPyNP‐based FET sensors exhibit ultrasensitivity and selectivity towards BPA at unprecedentedly low concentrations (1 fm ) and among molecules with similar structures. Additionally, due to the covalent bonding involved in the immobilization processes, a longer lifetime is expected for the FET sensor.  相似文献   

3.
In sensor networks, analyzing power consumption before actual deployment is crucial for maximizing service lifetime. This paper proposes an instruction‐level power estimator (IPEN) for sensor networks. IPEN is an accurate and fine grain power estimation tool, using an instruction‐level simulator. It is independent of the operating system, so many different kinds of sensor node software can be simulated for estimation. We have developed the power model of a Micaz‐compatible mote. The power consumption of the ATmega128L microcontroller is modeled with the base energy cost and the instruction overheads. The CC2420 communication component and other peripherals are modeled according to their operation states. The energy consumption estimation module profiles peripheral accesses and function calls while an application is running. IPEN has shown excellent power estimation accuracy, with less than 5% estimation error compared to real sensor network implementation. With IPEN's high precision instruction‐level energy prediction, users can accurately estimate a sensor network's energy consumption and achieve fine‐grained optimization of their software.  相似文献   

4.
Low power consuming and highly responsive semiconductor‐type microelectromechanical systems (MEMS) gas sensors are fabricated for real‐time environmental monitoring applications. This subsystem is developed using a gas sensor module, a Bluetooth module, and a personal digital assistant (PDA) phone. The gas sensor module consists of a NO2 or CO gas sensor and signal processing chips. The MEMS gas sensor is composed of a microheater, a sensing electrode, and sensing material. Metal oxide nanopowder is drop‐coated onto a substrate using a microheater and integrated into the gas sensor module. The change in resistance of the metal oxide nanopowder from exposure to oxidizing or deoxidizing gases is utilized as the principle mechanism of this gas sensor operation. The variation detected in the gas sensor module is transferred to the PDA phone by way of the Bluetooth module.  相似文献   

5.
Constrained by the physical environments, the long‐thin topology has recently been promoted for many practical deployments of wireless sensor networks (WSNs). In general, a long‐thin topology is composed of a number of long branches of sensor nodes, where along a branch each sensor node has only one potential parent node toward the sink node. Although data aggregation may alleviate excessive packet contention, the maximum payload size of a packet and the dynamically changing traffic loads may severely affect the amount of sensor readings that may be collected along a long branch of sensor nodes. In addition, many practical applications of long‐thin WSNs demand the exact sensor readings at each location along the deployment areas for monitoring and analysis purposes, so sensor readings may not be aggregated when they are collected. This paper proposes a lightweight, self‐adaptive scheme that designates multiple collection nodes, termed lock gates, along a long‐thin network to collect sensor readings sent from their respective upstream sensor nodes. The self‐adaptive lock gate designation scheme balances between the responsiveness and the congestion of data collection while mitigating the funneling effect. The scheme also dynamically adapts the designation of lock gates to accommodate the time‐varying sensor reading generation rates of different sensor nodes. A testbed of 100 Jennic sensor nodes is developed to demonstrate the effectiveness of the proposed lock gate designation scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Energy consumption is one of the most important design constraints when building a wireless sensor and actuator network since each device in the network has a limited battery capacity, and prolonging the lifetime of the network depends on saving energy. Overcoming this challenge requires a smart and reconfigurable network energy management strategy. The Software‐Defined Networking (SDN) paradigm aims at building a flexible and dynamic network structure, especially in wireless sensor networks. In this study, we propose an SDN‐enabled wireless sensor and actuator network architecture that has a new routing discovery mechanism. To build a flexible and energy‐efficient network structure, a new routing decision approach that uses a fuzzy‐based Dijkstra's algorithm is developed in the study. The proposed architecture can change the existing path during data transmission, which is the key property of our model and is achieved through the adoption of the SDN approach. All the components and algorithms of the proposed system are modeled and simulated using the Riverbed Modeler software for more realistic performance evaluation. The results indicate that the proposed SDN‐enabled structure with fuzzy‐based Dijkstra's algorithm outperforms the one using the regular Dijkstra's and the ZigBee‐based counterpart, in terms of the energy consumption ratio, and the proposed architecture can provide an effective cluster routing while prolonging the network lifetime.  相似文献   

7.
Most sensor networks are deployed at hostile environments to sense and gather specific information. As sensor nodes have battery constraints, therefore, the research community is trying to propose energy‐efficient solutions for wireless sensor networks (WSNs) to prolong the lifetime of the network. In this paper, we propose an energy‐efficient multi‐level and distance‐aware clustering (EEMDC) mechanism for WSNs. In this mechanism, the area of the network is divided into three logical layers, which depends upon the hop‐count‐based distance from the base station. The simulation outcomes show that EEMDC is more energy efficient than other existing conventional approaches. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Wireless sensor networks for environmental monitoring and agricultural applications often face Long‐range requirements at low bit rates together with a large numbers of nodes. This paper presents the design and test of a novel wireless sensor network that combines a large radio range with very low power consumption and cost. Our asymmetric sensor network uses ultra‐low‐cost 40‐MHz transmitters and a sensitive software‐defined radio receiver with multi‐channel capability. Experimental radio range measurements in two different outdoor environments demonstrate a single‐hop range of up to 1.8 km. A theoretical model for radio propagation at 40 MHz in outdoor environments is proposed and validated with the experimental measurements. The reliability and fidelity of network communication over longer periods is evaluated with a deployment for distributed temperature measurements. Our results demonstrate the feasibility of the transmit‐only low‐frequency system design approach for future environmental sensor networks. Although there have been several papers proposing the theoretical benefits of this approach, to the best of our knowledge, this is the first paper to provide experimental validation of such claims. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The fabrication of a skin‐attachable, stretchable array of high‐sensitivity temperature sensors is demonstrated. The temperature sensor consists of a single‐walled carbon nanotube field‐effect transistor with a suspended gate electrode of poly(N‐isopropylacrylamide) (PNIPAM)‐coated gold grid/poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate and thermochromic leuco dye. The sensor exhibits a very high sensitivity of 6.5% °C?1 at temperatures between 25 and 45 °C. With increasing temperature, the suspended gate electrode bends due to the deswelling of the PNIPAM, resulting in the reduction of the air gap to increase the drain current under a constant gate voltage. At the same time, the leuco dye coated on top of the transparent gate electrode changes color to visualize changes in temperature. The 4 × 6 integrated temperature sensor array integrated using liquid metal interconnections exhibits mechanical and electrical stability under 50% biaxial stretching and allows for the spatial mapping of temperature with visual color display regardless of wrist movement while attached to the skin of the wrist. This work is expected to be widely useful in the development of skin‐attachable electronics for medical and health‐care monitoring.  相似文献   

10.
A new surface functionalization scheme for nano‐Bio field effect transistors (FETs) using biocompatible polyelectrolyte thin films (PET) is developed. PET assemblies on Si nanowires (Si‐NWs) are driven by electrostatic interactions between the positively charged polymer backbone and negatively charged Si/SiO2 surface. Such assemblies can be directly coated from PET aqueous solutions and result in a uniform nanoscale thin film, which is more stable compared to the conventional amine silanization. Short oligo‐ethylene glycol chains are grafted on the PETs to prevent nonspecific protein binding. Moreover, the reactive groups of the polymer chains can be further functionalized to other chemical groups in specific stoichiometry for biomolecules detection. Therefore, it opens a new strategy to precisely control the functional group densities on various biosensor surfaces at the molecular level. In addition, such assemblies of the polymers together with the bound analytes can be removed with the pH stimulation resulting in regeneration of a bare sensor surface without compromising the integrity and performance of the Si‐NWs. Thus, it is believed that the developed PET coating and sensing systems on Si‐NW FETs represent a versatile, promising approach for regenerative biosensors which can be applied to other biosensors and will benefit real device applications, enhancing sensor lifetime, reliability, and repeatability.  相似文献   

11.
The development of stretchable/soft electronics requires power sources that can match their stretchability. In this study, a highly stretchable, transparent, and environmentally stable triboelectric nanogenerator with ionic conductor electrodes (iTENG) is reported. The ion‐conducting elastomer (ICE) electrode, together with a dielectric elastomer electrification layer, allows the ICE‐iTENG to achieve a stretchability of 1036% and transmittance of 91.5%. Most importantly, the ICE is liquid solvent‐free and thermally stable up to 335 °C, avoiding the dehydration‐induced performance degradation of commonly used hydrogels. The ICE‐iTENG shows no decrease in electrical output even after storing at 100 °C for 15 h. Biomechanical motion energies are demonstrated to be harvested by the ICE‐iTENG for powering wearable electronics intermittently without extra power sources. An ICE‐iTENG‐based pressure sensor is also developed with sensitivity up to 2.87 kPa?1. The stretchable ICE‐iTENG overcomes the strain‐induced performance degradation using percolated electrical conductors and liquid evaporation‐induced degradation using ion‐conducting hydrogels/ionogels, suggesting great promising applications in soft/stretchable electronics under a relatively wider temperature range.  相似文献   

12.
In addition to the requirements of the terrestrial sensor network where performance metrics such as throughput and packet delivery delay are often emphasized, energy efficiency becomes an even more significant and challenging issue in underwater acoustic sensor networks, especially when long‐term deployment is required. In this paper, we tackle the problem of energy conservation in underwater acoustic sensor networks for long‐term marine monitoring applications. We propose an asynchronous wake‐up scheme based on combinatorial designs to minimize the working duty cycle of sensor nodes. We prove that network connectivity can be properly maintained using such a design even with a reduced duty cycle. We study the utilization ratio of the sink node and the scalability of the network using multiple sink nodes. Simulation results show that the proposed asynchronous wake‐up scheme can effectively reduce the energy consumption for idle listening and can outperform other cyclic difference set‐based wake‐up schemes. More significantly, high performance is achieved without sacrificing network connectivity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
One of the most challenging tasks encountered in developing highly efficient electro‐optic (EO) devices is to find a material system that possesses all desirable properties such as large EO coefficients, good thermal and mechanical stability, and low optical loss. In order to meet this stringent requirement, we have developed a series of crosslinkable EO dendrimers using the standardized AJL8 ‐type chromophore as the center core and the furyl‐ and anthryl‐containing dendrons as the periphery. Upon adding a trismaleimide ( TMI ) dienophile, these dendrimers could be in‐situ crosslinked via the Diels–Alder cycloaddition and efficiently poled under a high electric field. Through this dynamic process, the spatially voided and π‐electron‐rich surrounding of the chromophore core changes into a dense and more aliphatic network, with the dipolar chromophore embedded and aligned inside. The resultant materials exhibit large EO coefficients (63–99 pm V–1 at 1.31 μm), excellent temporal stability (the original r33 values remain unchanged at 100 °C for more than 500 h), and blue‐shifted near‐IR absorption. With these combined desirable properties, a poled EOD2/TMI film could be processed through multiple lithographic and etching steps to fabricate a racetrack‐shaped micro‐ring resonator. By coupling this ring resonator with a side‐polished optical fiber, a novel broadband electric‐field sensor with high sensitivity of 100 mV m–1 at 550 MHz was successfully demonstrated.  相似文献   

14.
This paper proposes a compact, energy‐efficient, and smart gas sensor platform technology for ubiquitous sensor network (USN) applications. The compact design of the platform is realized by employing silicon‐on‐insulator (SOI) technology. The sensing element is fully integrated with SOI CMOS circuits for signal processing and communication. Also, the micro‐hotplate operates at high temperatures with extremely low power consumption, which is important for USN applications. ZnO nanowires are synthesized onto the micro‐hotplate by a simple hydrothermal process and are patterned by a lift‐off to form the gas sensor. The sensor was operated at 200°C and showed a good response to 100 ppb NO2 gas.  相似文献   

15.
This paper presents a novel, practically implementable robust Power Control (PC) technique that is generally applicable to a variety of IEEE 802.15.4 infrastructure and peer‐to‐peer wireless sensor networks (WSNs) where there is a round‐trip time‐delay uncertainty. In this methodology, robust stability and performance constraints are cast as a set of exclusion regions on the Nichols chart. The desired PC strategy is achieved through an iterative shaping of the system frequency response until these constraints are satisfied. A Smith Predictor (SP) is also adopted to mitigate the effects of time delay that occurs quite naturally in this type of problem. Such an approach is shown to be entirely appropriate for the discrete time controller design problem at hand. The designs are validated experimentally using a fully compliant 802.15.4 testbed where mobility is introduced using autonomous robots. This testbed provides a good basis for a formal comparison of the new approach against a number of existing strategies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Of significance in wireless multimedia sensor networks (WMSN) is the maintenance of media quality and the extension of route lifetime since media stream is more sensitive in quality requirement than data flow. In this paper, the problem of how to balance the needs on constraining end‐to‐end (e2e) quality and prolonging lifetime in an established route can be interpreted as a nonlinear optimization paradigm, which is then shown to be a max—min composite formulation when an e2e frame‐error probability is given. To solve this max—min problem, we propose two novel methods: route‐associated power management (RAPM) and link‐associated power management (LAPM). For computation‐restricted sensor nodes, the RAPM scheme with adding a simplification condition on power management can effectively reduce the power cost at computation and also rapidly determine optimum lifetime from numerous candidate routes. On the other hand, if computing power is not the major concern in a sink node, rather than using a heuristic method, we employ the LAPM algorithm to solve the lifetime maximization problem in a more accurate fashion. Solid theoretical analysis and simulation results are presented to validate our proposed schemes. Both analytical and simulation results demonstrate that the LAPM scheme is very comparable to the heuristic approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Many sensor node platforms used for establishing wireless sensor networks (WSNs) can support multiple radio channels for wireless communication. Therefore, rather than using a single radio channel for whole network, multiple channels can be utilized in a sensor network simultaneously to decrease overall network interference, which may help increase the aggregate network throughput and decrease packet collisions and delays. This method, however, requires appropriate schemes to be used for assigning channels to nodes for multi‐channel communication in the network. Because data generated by sensor nodes are usually delivered to the sink node using routing trees, a tree‐based channel assignment scheme is a natural approach for assigning channels in a WSN. We present two fast tree‐based channel assignment schemes (called bottom up channel assignment and neighbor count‐based channel assignment) for multi‐channel WSNs. We also propose a new interference metric that is used by our algorithms in making decisions. We validated and evaluated our proposed schemes via extensive simulation experiments. Our simulation results show that our algorithms can decrease interference in a network, thereby increasing performance, and that our algorithms are good alternatives for static channel assignment in WSNs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Portable and wearable sensors have attracted considerable attention in the healthcare field because they can be worn or implanted into a human body to monitor environmental information. However, sensors cannot work independently and require power. Flexible in‐plane micro‐supercapacitor (MSC) is a suitable power device that can be integrated with sensors on a single chip. Meanwhile, paper is an ideal flexible substrate because it is cheap and disposable and has a porous and rough surface that enhances interface adhesion with electronic devices. In this study, a new strategy to integrate MSCs, which have excellent electrochemical and mechanical performances, with sensors on a single piece of paper is proposed. The integration is achieved by printing Ni circuit on paper without using a precoating underlay. Ink diffusion is also addressed to some degree. Meanwhile, a UV sensor is integrated on a single paper, and the as‐integrated device shows good sensing and self‐powering capabilities. MSCs can also be integrated with a gas sensor on one‐piece paper and can be charged by connecting it to a solar cell. Thus, it is potentially feasible that a flexible paper can be used for integrating MSCs with solar cell and various sensors to generate, store, and use energy.  相似文献   

19.
Multiple‐input multiple‐output (MIMO) enabled wireless sensor networks (WSNs) are becoming increasingly important since significant performance enhancement can be realized. In this paper, we propose a packet forward strategy for MIMO sensor networks by jointly considering channel coding, rate adaptation, and power allocation. Each sensor node has multiple antennas and uses orthogonal space time block codes (OSTBC) to exploit both spatial and temporal diversities. The objective is to determine the optimal routing path that achieves the minimum symbol error rate (SER) subject to the source‐to‐destination (S‐D) energy consumption constraint. This SER‐based quality‐of‐service (QoS) aware packet forwarding problem is formulated into the framework of dynamic programming (DP). We then propose a low‐complexity and near‐optimal approach to considerably reduce the computation complexity, which includes state space partition and state aggregation techniques. Simulations indicate that the proposed protocol significantly outperforms traditional algorithms. Further still, the performance gain increases with tighter S‐D energy constraint. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A multiwalled carbon nanotube (MWCNT)‐based electrochemical biosensor is developed for monitoring microcystin‐LR (MC‐LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using vertically well‐aligned, dense, millimeter‐long MWCNT arrays with a narrow size distribution, grown on patterned Si substrates by water‐assisted chemical vapor deposition. High temperature thermal treatment (2500 °C) in an Ar atmosphere is used to enhance the crystallinity of the pristine materials, followed by electrochemical functionalization in alkaline solution to produce oxygen‐containing functional groups on the MWCNT surface, thus providing the anchoring sites for linking molecules that allow the immobilization of MC‐LR onto the MWCNT array electrodes. Addition of the monoclonal antibodies specific to MC‐LR in the incubation solutions offers the required sensor specificity for toxin detection. The performance of the MWCNT array biosensor is evaluated using micro‐Raman spectroscopy, including polarized Raman measurements, X‐ray photoelectron spectroscopy, cyclic voltammetry, optical microscopy, and Faradaic electrochemical impedance spectroscopy. A linear dependence of the electron‐transfer resistance on the MC‐LR concentration is observed in the range of 0.05 to 20 μg L?1, which enables cyanotoxin monitoring well below the World Health Organization (WHO) provisional concentration limit of 1 μg L?1 for MC‐LR in drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号