首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Here, we propose a facile strategy to realize all-solution-processed highly efficient full-color-enabling white emitting quantum dot light-emitting diodes (QLEDs) at ambient conditions by using low-cost blade coating technique, which was also compatible with the roll to roll fabrication process for large size production. Firstly, by using red quantum dots (QDs) as the representative to optimize the QDs films by blade coating, the QDs films exhibit excellent morphology and well-ordered self-assembly structure. Then, the trichromatic white QLEDs based on mixed red, green and blue quantum dots were obtained with Commission Internationale De I'Eclairage (CIE) coordinates ranging from (0.42, 0.41) to (0.31, 0.33) within the white region of CIE 1931 when driving voltage vary from 5 v to 8 v. The device enjoys excellent optoelectronic performance including a maximum luminance of 11,465 cd/m2, a maximum current efficiency (ηA) of 9.2 cd/A and an external quantum efficiency (EQE) of 3.7%. In addition, 3 × 8 cm2 white QLEDs with bright and homogenous light emission fabricated by blade coating are demonstrated. Our strategy for fabricating large-area white QLEDs indicate promising applications in the low-cost solid-state lighting and flat-panel displays.  相似文献   

2.
High‐quality violet‐blue emitting ZnxCd1‐xS/ZnS core/shell quantum dots (QDs) are synthesized by a new method, called “nucleation at low temperature/shell growth at high temperature”. The resulting nearly monodisperse ZnxCd1‐xS/ZnS core/shell QDs have high PL quantum yield (near to 100%), high color purity (FWHM) <25 nm), good color tunability in the violet‐blue optical window from 400 to 470 nm, and good chemical/photochemical stability. More importantly, the new well‐established protocols are easy to apply to large‐scale synthesis; around 37 g ZnxCd1‐xS/ZnS core/shell QDs can be easily synthesized in one batch reaction. Highly efficient deep‐blue quantum dot‐based light‐emitting diodes (QD‐LEDs) are demonstrated by employing the ZnxCd1‐xS/ZnS core/shell QDs as emitters. The bright and efficient QD‐LEDs show a maximum luminance up to 4100 cd m?2, and peak external quantum efficiency (EQE) of 3.8%, corresponding to 1.13 cd A?1 in luminous efficiency. Such high value of the peak EQE can be comparable with OLED technology. These results signify a remarkable progress, not only in the synthesis of high‐quality QDs but also in QD‐LEDs that offer a practicle platform for the realization of QD‐based violet‐blue display and lighting.  相似文献   

3.
Light‐emitting diodes (LEDs) based on lead halide perovskites demonstrate outstanding optoelectronic properties and are strong competitors for display and lighting applications. While previous halide perovskite LEDs are mainly produced via solution processing, here an all‐vacuum processing method is employed to construct CsPbBr3 LEDs because vacuum processing exhibits high reliability and easy integration with existing OLED facilities for mass production. The high‐throughput combinatorial strategies are further adopted to study perovskite composition, annealing temperature, and functional layer thickness, thus significantly speeding up the optimization process. The best rigid device shows a current efficiency (CE) of 4.8 cd A?1 (EQE of 1.45%) at 2358 cd m?2, and best flexible device shows a CE of 4.16 cd A?1 (EQE of 1.37%) at 2012 cd m?2 with good bending tolerance. Moreover, by choosing NiOx as the hole‐injection layer, the CE is improved to 10.15 cd A?1 and EQE is improved to a record of 3.26% for perovskite LEDs produced by vacuum deposition. The time efficient combinatorial approaches can also be applied to optimize other perovskite LEDs.  相似文献   

4.
Metal halide perovskite materials have emerged as a promising class of semiconductors for high-performance optoelectronic applications, particularly for light-emitting diodes (LEDs), due to their high quantum efficiency, facile color tunability, narrow emission line widths, as well as cost-effectiveness. Despite the great successes on green and red perovskite LEDs (PeLEDs), the external quantum efficiency (EQE) of blue PeLEDs still lags far behind that of green and red counterparts. Here, wavelength tunable pure and deep blue PeLEDs with high EQE are presented, achieving 17.5% and 10.8% for emission wavelengths of 472 and 461 nm, respectively. The wavelength tenability and high EQE are attributed to the unique vertically graded bandgaps and grain boundary organic shells in the perovskite films. The results demonstrate a significant performance improvement in blue PeLEDs, provide a novel route to fabricate high-performance pure and deep blue PeLEDs that can match the performance of the green and red PeLEDs for future lighting and display applications.  相似文献   

5.
Organic–inorganic hybrid perovskites (OHPs) are promising emitters for light‐emitting diodes (LEDs) due to the high color purity, low cost, and simple synthesis. However, the electroluminescent efficiency of polycrystalline OHP LEDs (PeLEDs) is often limited by poor surface morphology, small exciton binding energy, and long exciton diffusion length of large‐grain OHP films caused by uncontrolled crystallization. Here, crystallization of methylammonium lead bromide (MAPbBr3) is finely controlled by using a polar solvent‐soluble self‐doped conducting polymer, poly(styrenesulfonate)‐grafted polyaniline (PSS‐g‐PANI), as a hole injection layer (HIL) to induce granular structure, which makes charge carriers spatially confined more effectively than columnar structure induced by the conventional poly(3,4‐ethylenedioythiphene):polystyrenesulfonate (PEDOT:PSS). Moreover, lower acidity of PSS‐g‐PANI than PEDOT:PSS reduces indium tin oxide (ITO) etching, which releases metallic In species that cause exciton quenching. Finally, doubled device efficiency of 14.3 cd A‐1 is achieved for PSS‐g‐PANI‐based polycrystalline MAPbBr3 PeLEDs compared to that for PEDOT:PSS‐based PeLEDs (7.07 cd A‐1). Furthermore, PSS‐g‐PANI demonstrates high efficiency of 37.6 cd A‐1 in formamidinium lead bromide nanoparticle LEDs. The results provide an avenue to both control the crystallization kinetics and reduce the migration of In released from ITO by forming OIP films favorable for more radiative luminescence using the polar solvent‐soluble and low‐acidity polymeric HIL.  相似文献   

6.
Organic‐inorganic hybrid perovskite (CH3NH3PbX3, X = Cl, Br or I) quantum dots (QDs) have shown superior optoelectronic properties and have been regarded as a most ideal material for next‐generation optoelectronic devices, particularly for QDs‐based light‐emitting diodes (QLEDs). However, there are only a few reports on CH3NH3PbX3 QLEDs and the reported performance is still very poor, primarily due to the difficulties in the fabrication of high‐quality compact QDs thin films. In this work, an electric‐field‐assisted strategy is developed for efficient fabrication of uniform CH3NH3PbBr3 QDs thin films with high photoluminescence quantum yields (PLQY, 80%–90%) from dilute CH3NH3PbBr3 QDs suspensions (≈0.1 mg mL‐1) within 5 mins. Benefited from the high‐quality CH3NH3PbBr3 QDs thin films, the corresponding QLEDs deliver a highly bright green emission with maximum luminances of 12450 cd m2. Furthermore, a current efficiency of 12.7 cd A‐1, a power efficiency of 9.7 lm W‐1, and an external quantum efficiency (EQE) of 3.2% were acheived by enhancing the hole injection. This performance represents the best results for CH3NH3PbBr3 QDs‐based QLEDs reported to date. These results indicate an important progress in the fabrication of high‐performance CH3NH3PbX3 QLEDs and demonstrate their huge potential for next‐generation displays and lighting.  相似文献   

7.
Because of outstanding optical properties and non‐vacuum solution processability of colloidal quantum dot (QD) semiconductors, many researchers have developed various light emitting diodes (LEDs) using QD materials. Until now, the Cd‐based QD‐LEDs have shown excellent properties, but the eco‐friendly QD semiconductors have attracted many attentions due to the environmental regulation. And, since there are many issues about the reliability of conventional QD‐LEDs with organic charge transport layers, a stable charge transport layer in various conditions must be developed for this reason. This study proposes the organic/inorganic hybrid QD‐LEDs with Cd‐free InP QDs as light emitting layer and inorganic ZrO2 nanoparticles as electron transport layer. The QD‐LED with bottom emission structure shows the luminescence of 530 cd m?2 and the current efficiency of 1 cd/A. To realize the transparent QD‐LED display, the two‐step sputtering process of indium zinc oxide (IZO) top electrode is applied to the devices and this study could fabricate the transparent QD‐LED device with the transmittance of more than 74% for whole device array. And when the IZO top electrode with high work‐function is applied to top transparent anode, the device could maintain the current efficiency within the driving voltage range without well‐known roll‐off phenomenon in QD‐LED devices.  相似文献   

8.
Yellow emission is crucial in RGBY display technology and in fabricating physiologically friendly, low color‐temperature lighting sources. Emitters with both wet‐ and dry‐process feasibility are highly desirable to fabricate, respectively, high‐quality devices via vapor deposition and cost‐effective, large‐area devices via roll‐to‐roll fabrication. Here, high‐efficiency organic light‐emitting diodes with a novel wet‐ and dry‐process feasible yellow‐emitting iridium complex, bis[5‐methyl‐7‐fluoro‐5H‐benzo(c)(1,5) naphthyridin‐6‐one]iridium (picolinate), are demonstrated. By spin coating, the device shows, at 1000 cd m?2, an external quantum efficiency (EQE) of 18.5% with an efficacy of 52.3 lm W?1, the highest among all reported yellow devices via wet‐process, while using vapor deposition, the EQE is 22.6% with a 75.1 lm W?1 efficacy, the highest among all dry‐processed counterparts. The high efficiency may be attributed to the replacement of the hydrogen atom with a fluorine atom on a 2‐substitutional site in the emitter to prevent dense molecular packing‐caused self‐quenching and to reduce radiationless deactivation rates, leading to a high quantum yield (71%).  相似文献   

9.
Quasi‐2D metal halide perovskite films are promising for efficient light‐emitting diodes (LEDs), because of their efficient radiative recombination and suppressed trap‐assisted quenching compared with pure 3D perovskites. However, because of the multidomain polycrystalline nature of solution‐processed quasi‐2D perovskite films, the composition engineering always impacts the emitting properties with complicated mechanisms. Here, defect passivation and domain distribution of quasi‐2D perovskite films prepared with various precursor compositions are systematically studied. As a result, in perovskite films prepared from stoichiometric quasi‐2D precursor compositions, large organic ammonium cations function well as passivators. In comparison, precursor compositions of simply adding large organic halide salt into a 3D perovskite precursor ensure not only the defect passivation but also the effective formation of quasi‐2D perovskite domains, avoiding unfavorable appearance of low‐order domains. Quasi‐2D perovskite films fabricated with a well‐designed precursor composition achieve a high photoluminescence quantum yield of 95.3% and an external quantum efficiency of 14.7% in LEDs.  相似文献   

10.
A novel thermally activated delayed fluorescence (TADF) molecule, PHCz2BP, is synthesized and used to construct high performance organic light‐emitting diodes (OLEDs) in this work. PHCz2BP is not only the neat emitting layer for efficient sky‐blue OLED, with very high peak external quantum efficiency/power efficiency (EQE/PE) values of 4.0%/6.9 lm W?1, but also acts as a host to sensitize high‐luminance and high‐efficiency green, orange, and red electrophosphorescence with the universal high EQEs of >20%. More importantly, two hybrid white OLEDs based on the double‐layer emitting system of PHCz2BP:green phosphor/PHCz2BP:red phosphor are achieved. To the best of the knowledge, this is the first report for three‐color (blue–green–red) white devices that adopt a TADF blue host emitter and two phosphorescent dopants without any other additional host. Such simple emitting systems thus realized the best electroluminescent performance to date for the WOLEDs utilizing the hybrid TADF/phosphor strategy: forward‐viewing EQEs of 25.1/23.6% and PEs of 24.1/22.5 lm W?1 at the luminance of 1000 cd m?2 with the color rendering indexes of 85/87 and warm‐white Commission Internationale de L'Eclairage coordinates of (0.41, 0.46)/(0.42, 0.45), indicating its potential to be used as practical eye‐friendly solid‐state lighting in future.  相似文献   

11.
《Organic Electronics》2008,9(2):155-163
Solution processable blue fluorescent dendrimers based on cyclic phosphazene (CP) cores incorporating amino-pyrene moieties have been prepared and used as emissive layers in organic light emitting diodes (OLEDs). These dendrimers have high glass transition temperatures, are monodisperse, have high purity via common chromatographic techniques, and form defect-free amorphous films via spin/dip coating. The solution processable blue light emitting OLEDs reach current efficiencies of 3.9 cd/A at brightness levels near 1000 cd/m2. Depending on the molecular bridge used to attach the fluorescent dendron to the inorganic core, the emission wavelength changes from 470 to 545 nm, corresponding to blue and green light respectively. Via dilution experiments we show that this shift in emission wavelength is likely associated with molecular stacking of the amino-pyrene units.  相似文献   

12.
Quantum dots (QDs) luminescent films have broad applications in optoelectronics, solid‐state light‐emitting diodes (LEDs), and optical devices. This work reports the fabrication of multicolor‐light‐emitting ultrathin films (UTFs) with 2D architecture based on CdTe QDs and MgAl layered double hydroxide (LDH) nanosheets via the layer‐by‐layer deposition technique. The hybrid UTFs possess periodic layered structure, which is verified by X‐ray diffraction. Tunable light emission in the red‐green region is obtained by changing the particle size of QDs (CdTe‐535 QDs and CdTe‐635 QDs with green and red emision respectively), assembly cycle number, and sequence. Moreover, energy transfer between CdTe‐535 QDs and CdTe‐635 QDs occurs based on the fluorescence resonance energy transfer (FRET), which greatly enhances the fluorescence efficiency of CdTe‐635 QDs. In addition, a theoretical study based on the Förster theory and molecular dynamics (MD) simulations demonstrates that CdTe QDs/LDH UTFs exhibit superior capability of energy transfer owing to the ordered dispersion of QDs in the 2D LDH matrix, which agrees well with the experimental results. Therefore, this provides a facile approach for the design and fabrication of inorganic‐inorganic luminescent UTFs with largely enhanced luminescence efficiency as well as stability, which can be potentially applied in multicolor optical and optoelectronic devices.  相似文献   

13.
Using imidazole‐type ancillary ligands, a new class of cationic iridium complexes ( 1 – 6 ) is prepared, and photophysical and electrochemical studies and theoretical calculations are performed. Compared with the widely used bpy (2,2′‐bipyridine)‐type ancillary ligands, imidazole‐type ancillary ligands can be prepared and modified with ease, and are capable of blueshifting the emission spectra of cationic iridium complexes. By tuning the conjugation length of the ancillary ligands, blue‐green to red emitting cationic iridium complexes are obtained. Single‐layer light‐emitting electrochemical cells (LECs) based on cationic iridium complexes show blue‐green to red electroluminescence. High efficiencies of 8.4, 18.6, and 13.2 cd A?1 are achieved for the blue‐green‐emitting, yellow‐emitting, and orange‐emitting devices, respectively. By doping the red‐emitting complex into the blue‐green LEC, white LECs are realized, which give warm‐white light with Commission Internationale de L'Eclairage (CIE) coordinates of (0.42, 0.44) and color‐rendering indexes (CRI) of up to 81. The peak external quantum efficiency, current efficiency, and power efficiency of the white LECs reach 5.2%, 11.2 cd A?1, and 10 lm W?1, respectively, which are the highest for white LECs reported so far, and indicate the great potential for the use of these cationic iridium complexes in white LECs.  相似文献   

14.
Novel light emitting electrochemical cells (LECs) are fabricated using CdSe‐CdS (core‐shell) quantum dots (QDs) of tuned size and emission blended with polyvinylcarbazole (PVK) and the ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIM‐PF6). The performances of cells constructed using sequential device layers of indium tin oxide (ITO), poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS), the QD/PVK/IL active layer, and Al are evaluated. Only color saturated electroluminescence from the QDs is observed, without any other emissions from the polymer host or the electrolyte. Blue, green, and red QD‐LECs are prepared. The maximum brightness (≈1000 cd m‐2) and current efficiency (1.9 cd A‐1) are comparable to polymer LECs and multilayer QD‐LEDs. White‐light QD‐LECs with Commission Internationale d'Eclairage (CIE) coordinates (0.33, 0.33) are prepared by tuning the mass ratio of R:G:B QDs in the active layer and voltage applied. Transparent QD‐LECs fabricated using transparent silver nanowire (AgNW) composites as the cathode yield an average transmittance greater than 88% over the visible range. Flexible devices are demonstrated by replacing the glass substrates with polyethylene terephthalate (PET).  相似文献   

15.
Organic light‐emitting diodes (OLEDs) can promise flexible, light weight, energy conservation, and many other advantages for next‐generation display and lighting applications. However, achieving efficient blue electroluminescence still remains a challenge. Though both phosphorescent and thermally activated delayed fluorescence materials can realize high‐efficiency via effective triplet utilization, they need to be doped into appropriate host materials and often suffer from certain degree of efficiency roll‐off. Therefore, developing efficient blue‐emitting materials suitable for nondoped device with little efficiency roll‐off is of great significance in terms of practical applications. Herein, a phenanthroimidazole?anthracene blue‐emitting material is reported that can attain high efficiency at high luminescence in nondoped OLEDs. The maximum external quantum efficiency (EQE) of nondoped device is 9.44% which is acquired at the luminescence of 1000 cd m?2. The EQE is still as high as 8.09% even the luminescence reaches 10 000 cd m?2. The maximum luminescence is ≈57 000 cd m?2. The electroluminescence (EL) spectrum shows an emission peak of 470 nm and the Commission International de L'Eclairage (CIE) coordinates is (0.14, 0.19) at the voltage of 7 V. To the best of the knowledge, this is among the best results of nondoped blue EL devices.  相似文献   

16.
Metal halide perovskite quantum dots (QDs) have emerged as potential materials for high brightness, wide color gamut, and cost-effective backlight emission due to their high photoluminescence quantum yields, narrow emission linewidths, and tunable bandgaps. Herein, CsPbX3/SBA-15 nanocomposites are prepared with outstanding optical properties and high stability through an in situ growth strategy using mesoporous silica particles. According to finite-difference time-domain simulations, the mesoporous structure provides a strong waveguide effect on perovskite QDs and the uniform dispersion suppresses reabsorption losses, improving the overall photoconversion efficiency of perovskite QDs. The as-fabricated perovskite monochromatic light-emitting diode (LED) has a maximum luminous efficiency of 183 lm W−1, which is the highest for monochromatic perovskite LEDs reported to date. A further benefit of this work is that the white devices, which combine the green and red perovskite nanocomposites with commercial blue LED, exhibit a high luminous efficiency of 116 lm W−1 and a wide color gamut (125% for NTSC and 94% for Rec. 2020) with coordinates of (0.33,0.31).  相似文献   

17.
Phosphorescent organic light emitting diodes (PHOLEDs) have undergone tremendous growth over the past two decades. Indeed, they are already prevalent in the form of mobile displays, and are expected to be used in large‐area flat panels recently. To become a viable technology for next generation solid‐state light source however, PHOLEDs face the challenge of achieving concurrently a high color rendering index (CRI) and a high efficiency at high luminance. To improve the CRI of a standard three color white PHOLED, one can use a greenish‐yellow emitter to replace the green emitter such that the gap in emission wavelength between standard green and red emitters is eliminated. However, there are relatively few studies on greenish‐yellow emitters for PHOLEDs, and as a result, the performance of greenish‐yellow PHOLEDs is significantly inferior to those emitting in the three primary colors, which are driven strongly by the display industry. Herein, a newly synthesized greenish‐yellow emitter is synthesized and a novel device concept is introduced featuring interzone exciton transfer to considerably enhance the device efficiency. In particular, high external quantum efficiencies (current efficiencies) of 21.5% (77.4 cd/A) and 20.2% (72.8 cd/A) at a luminance of 1000 cd/m2 and 5000 cd/m2, respectively, have been achieved. These efficiencies are the highest reported to date for greenish‐yellow emitting PHOLEDs. A model for this unique design is also proposed. This design could potentially be applied to enhance the efficiency of even longer wavelength yellow and red emitters, thereby paving the way for a new avenue of tandem white PHOLEDs for solid‐state lighting.  相似文献   

18.
The fabrication of bio‐hybrid functional films is demonstrated by applying a materials assembly technique. Based on the hierarchical structures of silk fibroin materials, functional molecular/materials, i.e., quantum dots (QDs), can be fixed to amino acid groups in silk fibroin films. It follows that white‐light‐emitting QD silk hybrid films are obtained by hydrogen bond molecular recognition to the –COO groups functionalized to blue luminescent ZnSe (5.2 nm) and yellow luminescent CdTe (4.1 nm) QDs in a molar ratio of 30:1 of ZnSe to CdTe QDs. Simultaneously, a systematic blue shift in the emission peak is observed from the QD solution to QDs silk fibroin films. The significant blue shift hints the appearance of the strong interaction between QDs and silk fibroins, which causes strong white‐light‐emitting uniform silk films. The molecular recognized interactions are confirmed by high resolution transmission electron microscopy, field scanning electron microscope, and attenuated total internal reflectance Fourier transform infrared spectroscopy. The QD silk films show unique advantages, including simple preparation, tunable white‐light emission, easy manipulation, and low fabrication costs, which make it a promising candidate for multicomponent optodevices.  相似文献   

19.
The first full‐color polymer organic light‐emitting diode (OLED) display is reported, fabricated by a direct photolithography process, that is, a process that allows direct structuring of the electroluminescent layer of the OLED by exposure to UV light. The required photosensitivity is introduced by attaching oxetane side groups to the backbone of red‐, green‐, and blue‐light‐emitting polymers. This allows for the use of photolithography to selectively crosslink thin films of these polymers. Hence the solution‐based process requires neither an additional etching step, as is the case for conventional photoresist lithography, nor does it rely on the use of prestructured substrates, which are required if ink‐jet printing is used to pixilate the emissive layer. The process allows for low‐cost display fabrication without sacrificing resolution: Structures with features in the range of 2 μm are obtained by patterning the emitting polymers via UV illumination through an ultrafine shadow mask. Compared to state‐of‐the‐art fluorescent OLEDs, the display prototype (pixel size 200 μm × 600 μm) presented here shows very good efficiency as well as good color saturation for all three colors. The application in solid‐state lighting is also possible: Pure white light [Commision Internationale de l'Éclairage (CIE) values of 0.33, 0.33 and color rendering index (CRI) of 76] is obtained at an efficiency of 5 cd A–1 by mixing the three colors in the appropriate ratio. For further enhancement of the device efficiency, an additional hole‐transport layer (HTL), which is also photo‐crosslinkable and therefore suitable to fabricate multilayer devices from solution, is embedded between the anode and the electroluminescent layer.  相似文献   

20.
Large‐area, ultrathin light‐emitting devices currently inspire architects and interior and automotive designers all over the world. Light‐emitting electrochemical cells (LECs) and quantum dot light‐emitting diodes (QD‐LEDs) belong to the most promising next‐generation device concepts for future flexible and large‐area lighting technologies. Both concepts incorporate solution‐based fabrication techniques, which makes them attractive for low cost applications based on, for example, roll‐to‐roll fabrication or inkjet printing. However, both concepts have unique benefits that justify their appeal. LECs comprise ionic species in the active layer, which leads to the omission of additional organic charge injection and transport layers and reactive cathode materials, thus LECs impress with their simple device architecture. QD‐LEDs impress with purity and opulence of available colors: colloidal quantum dots (QDs) are semiconducting nanocrystals that show high yield light emission, which can be easily tuned over the whole visible spectrum by material composition and size. Emerging technologies that unite the potential of both concepts (LEC and QD‐LED) are covered, either by extending a typical LEC architecture with additional QDs, or by replacing the entire organic LEC emitter with QDs or perovskite nanocrystals, still keeping the easy LEC setup featured by the incorporation of mobile ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号