首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Characterizing the density of states (DOS) width accurately is critical in understanding the charge‐transport properties of organic semiconducting materials as broader DOS distributions lead to an inferior transport. From a morphological standpoint, the relative densities of ordered and disordered regions are known to affect charge‐transport properties in films; however, a comparison between molecular structures showing quantifiable ordered and disordered regions at an atomic level and its impact on DOS widths and charge‐transport properties has yet to be made. In this work, for the first time, the DOS distribution widths of two model conjugated polymer systems are characterized using three different techniques. A quantitative correlation between energetic disorder from band‐bending measurements and charge transport is established, providing direct experimental evidence that charge‐carrier mobility in disordered materials is compromised due to the relaxation of carriers into the tail states of the DOS. Distinction and quantification of ordered and disordered regions of thin films at an atomic level is achieved using solid‐state NMR spectroscopy. An ability to compare solid‐state film morphologies of organic semiconducting polymers to energetic disorder, and in turn charge transport, can provide useful guidelines for applications of organic conjugated polymers in pertinent devices.  相似文献   

2.
This study is an extended investigation on the formation of the first few monolayers of conjugated poly(fluorene)‐based polymer films prepared from solution on defined polar and nonpolar surfaces. In particular, a symmetrical A–B–A triblock copolymer consisting of poly(2‐alkylaniline) as A blocks and poly(9,9‐dialkylfluorene) as B blocks and a poly(9,9‐dialkylfluorene) homopolymer is used for this study. The dependence on drying conditions by means of solvent selection, the influence of a subsequent heat treatment, and the influence of the substrate polarity are investigated for ultrathin films as well as the transition from the first monolayers to the bulk polymer. The study is performed with optical absorption and photoluminescence spectroscopy, and atomic force microscopy to obtain complementary information of optical properties and morphological details. We find that ultrathin films (ca. 1–2 nm) prepared on mica from various solvents form highly defined, flat monolayers at the interface without lateral regularities indicating a dipole–dipole interaction between conjugated‐polymer segments and mica surface dipoles. This is further confirmed by bathochromic photoluminescence shifts observed for the ultrathin layers compared to the bulk polymer. Complementary experiments on nonpolar surfaces, highly oriented pyrolytic graphite (HOPG), show a total absence of defined flat films supporting the assumption of a dipole–dipole assisted formation on mica. For increased film thickness on mica (5 nm and more) the homopolymer does not form any regular structures or ordered layers on top of the monolayer. In contrast, the triblock copolymer, shorter in length, revealed a tendency to form a less‐defined layer‐type growth (3–3.5 nm thick) above the monolayer that was of higher order for higher‐boiling‐point solvents, indicating that the polymers are found in a different conformation. Moreover, one finds that some solvents that show partial immiscibility with the polymer strongly alter the formation of the film. The observations made for the two different types of polymers allow for an assignment of film‐formation driving forces to individual polymer segments and allow for the formulation of a growth model that explains the observed results and indicates the importance of appropriate substrate selection for organic electronic/optoelectronic devices.  相似文献   

3.
Ordering of semiconducting polymers in thin films from the nano to microscale is strongly correlated with charge transport properties as well as organic field‐effect transistor performance. This paper reports a method to control nano to microscale ordering of poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) thin films by precisely regulating the solidification rate from the metastable state just before crystallization. The proposed simple but effective approach, kinetically controlled crystallization, achieves optimized P(NDI2OD‐T2) films with large polymer domains, long range ordered fibrillar structures, and molecular orientation preferable for electron transport leading to dramatic morphological changes in both polymer domain sizes at the micrometer scale and molecular packing structures at nanoscales. Structural changes significantly increase electron mobilities up to 3.43 ± 0.39 cm2 V?1 s?1 with high reliability, almost two orders of enhancement compared with devices from naturally dried films. Small contact resistance is also obtained for electron injection (0.13 MΩ cm), low activation energy (62.51 meV), and narrow density of states distribution for electron transport in optimized thin films. It is believed that this study offers important insight into the crystallization of conjugated polymers that can be broadly applied to optimize the morphology of semiconducting polymer films for solution processed organic electronic devices.  相似文献   

4.
Covalent polymer networks (CPNs) are of great technological interest due to their robustness and tunability; however, they are rarely applied as semiconductors in optoelectronic devices due to poor material processability. Herein, a simple, rapid, and powerful approach is reported to prepare CPN thin films based on an in situ thermal azide–alkyne cycloaddition (TAAC) in the absence of catalyst or solvent. The method is demonstrated with perylenediimide and triazine‐based monomers, and affords smooth and homogenous CPN films through solution processing and heat treatment (10 min). Moreover, the site‐specific TAAC realizes semiconducting CPNs without undesired impurities or byproducts, and tunable optoelectronic properties are achieved by varying the reaction temperature, which affects the intermolecular self‐assembly. The obtained CPN films exhibit exceptional solvent resistance and good n‐type semiconducting behavior, which together afford application in a series of multilayer solution‐processed organic photovoltaics, where the presence of CPN films significantly improves the solar energy conversion efficiency to over 8% (7% in control devices) when the CPN is used in a planar‐mixed heterojunction device architecture.  相似文献   

5.
The advent of special types of transparent electrodes, known as “ultrathin metal electrodes,” opens a new avenue for flexible and printable electronics based on their excellent optical transparency in the visible range while maintaining their intrinsic high electrical conductivity and mechanical flexibility. In this new electrode architecture, introducing metal nucleation inducers (MNIs) on flexible plastic substrates is a key concept to form high‐quality ultrathin metal films (thickness ≈ 10 nm) with smooth and continuous morphology. Herein, this paper explores the role of “polymeric” MNIs in fabricating ultrathin metal films by employing various polymers with different surface energies and functional groups. Moreover, a scalable approach is demonstrated using the ionic self‐assembly on typical plastic substrates, yielding large‐area electrodes (21 × 29.7 cm2) with high optical transmittance (>95%), low sheet resistance (<10 Ω sq?1), and extreme mechanical flexibility. The results demonstrate that this new class of flexible and transparent electrodes enables the fabrication of efficient polymer light‐emitting diodes.  相似文献   

6.
Three acceptor–acceptor (A–A) type conjugated polymers based on isoindigo and naphthalene diimide/perylene diimide are designed and synthesized to study the effects of building blocks and alkyl chains on the polymer properties and performance of all‐polymer photoresponse devices. Variation of the building blocks and alkyl chains can influence the thermal, optical, and electrochemical properties of the polymers, as indicated by thermogravimetric analysis, differential scanning calorimetry, UV–vis, cyclic voltammetry, and density functional theory calculations. Based on the A–A type conjugated polymers, the most efficient all‐polymer photovoltaic cells are achieved with an efficiency of 2.68%, and the first all‐polymer photodetectors are constructed with high responsivity (0.12 A W?1) and detectivity (1.2 × 1012 Jones), comparable to those of the best fullerene based organic photodetectors and inorganic photodetectors. Photoluminescence spectra, charge transport properties, and morphology of blend films are investigated to elucidate the influence of polymeric structures on device performances. This contribution demonstrates a strategy of systematically tuning the polymeric structures to achieve high performance all‐polymer photoresponse devices.  相似文献   

7.
In recent years, organic battery cathode materials have emerged as an attractive alternative to metal oxide–based cathodes. Organic redox polymers that can be reversibly oxidized are particularly promising. A drawback, however, often is their limited cycling stability and rate performance in a high voltage range of more than 3.4 V versus Li/Li+. Herein, a conjugated copolymer design with phenothiazine as a redox‐active group and a bithiophene co‐monomer is presented, enabling ultra‐high rate capability and cycling stability. After 30 000 cycles at a 100C rate, >97% of the initial capacity is retained. The composite electrodes feature defined discharge potentials at 3.6 V versus Li/Li+ due to the presence of separated phenothiazine redox centers. The semiconducting nature of the polymer allows for fast charge transport in the composite electrode at a high mass loading of 60 wt%. A comparison with three structurally related polymers demonstrates that changing the size, amount, or nature of the side groups leads to a reduced cell performance. This conjugated copolymer design can be used in the development of advanced redox polymers for batteries.  相似文献   

8.
We present the first detailed report that directly correlates the reduced contact resistance in organic thin‐film transistors (TFTs) with fundamental structural and morphological characterization at the organic semiconductor/conducting polymer interface. Specifically, the pentacene grains are similar in size and continuous across the channel/electrode interface in bottom‐contact TFTs with polyaniline (PANI) electrodes. On a molecular level, the fused rings of pentacene are oriented perpendicular to the surface both in the channel and on PANI. Accordingly, the contact resistance is small in such devices. In TFTs with gold electrodes, however, the pentacene grains are different in size and are discontinuous across the channel/electrode interface. Further, the fused rings of pentacene are oriented perpendicular to the channel surface and parallel to the gold surface. Such differences across the channel/electrode interface lead to structural and electronic disorder, which manifests itself as a significantly larger contact resistance in devices with gold electrodes.  相似文献   

9.
Rubrene single crystals can serve as a model material platform for studying the intrinsic photophysical processes in organic semiconductors and advance our understanding of material functionality in organic photovoltaic applications. The high degrees of structural order and material purity of organic single crystals enable a level of study that is unattainable in materials of current practical importance. Here, the photovoltaic effect at the Schottky interface of rubrene single crystal–aluminum electrode is demonstrated in a lateral ITO–rubrene–Al device geometry. The mechanism of the effect formation is explained based on the reconstructed energy band diagram of the ITO–rubrene–Al heterostructure. In particular, the open circuit voltage (VOC) of the devices shows a strong dependency on the interfacial band bending and corresponding built‐in potential at the rubrene–Al Schottky interface. Initially, the photovoltage is found to be equal to the built‐in potential at the Schottky interface defined by the work function difference between the bulk of rubrene and the Al electrode, that is, following the Schottky–Mott model. A good agreement is found between the systematically varied built‐in potential and the resulting photovoltage magnitude upon insertion of an ultrathin LiF interlayer between the rubrene and Al electrode.  相似文献   

10.
Organic–organic heterojunctions (OOHs) are critical features in organic light‐emitting diodes, ambipolar organic field‐effect transistors and organic solar cells, which are fundamental building blocks in low‐cost, large‐scale, and flexible electronics. Due to the highly anisotropic nature of π‐conjugated molecules, the molecular orientation of organic thin films can significantly affect the device performance, such as light absorption and charge‐carrier transport, as well as the energy level alignment at OOH interfaces. This Feature Article highlights recent progress in the understanding of interface energetics at small molecule OOH interfaces, focusing on the characterization and fabrication of OOH with well‐defined molecular orientations using a combination of in situ low‐temperature scanning tunneling microscopy, synchrotron‐based high‐resolution ultraviolet photoelectron spectroscopy and near‐edge X‐ray absorption fine structure measurements. The orientation dependent energy level alignments at the OOH interfaces will be discussed in detail.  相似文献   

11.
A new type of thin‐film electrode that does not utilize conducting polymers or traditional metal or chemical vapor deposition methods has been developed to create ultrathin flexible electrodes for fuel cells. Using the layer‐by‐layer (LbL) technique, carbon–polymer electrodes have been assembled from polyelectrolytes and stable carbon colloidal dispersions. Thin‐film LbL polyelectrolyte–carbon electrodes (LPCEs) have been successfully assembled atop both metallic and non‐metallic, porous and non‐porous substrates. These electrodes exhibit high electronic conductivities of 2–4 S cm–1, and their porous structure provides ionic conductivities in the range of 10–4 to 10–3 S cm–1. The electrodes show remarkable stability towards oxidizing, acidic, or delaminating basic solutions. In particular, an LPCE consisting of poly(diallyldimethyl ammonium chloride)/poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid)/carbon–platinum assembled on a porous stainless steel support yields an open‐circuit potential similar to that of a pure platinum electrode. With LbL carbon–polymer electrodes, the membrane‐electrode assembly (MEA) in a fuel cell can be made several times thinner, assume multiple geometries, and hence be more compact. The mechanism for LPCE deposition, electrode structure, and miniaturization will be presented and discussed, and demonstrations of the LbL electrodes in a traditional Nafion‐based proton fuel cell and the first demonstration of a thin‐film hydrogen–air “soft” fuel cell fully constructed using multilayer assembly are described.  相似文献   

12.
Wide‐bandgap conjugated polymers with a linear naphthacenodithiophene (NDT) donor unit are herein reported along with their performance in both transistor and solar cell devices. The monomer is synthesized starting from 2,6‐dihydroxynaphthalene with a double Fries rearrangement as the key step. By copolymerization with 2,1,3‐benzothiadiazole (BT) via a palladium‐catalyzed Suzuki coupling reaction, NDT‐BT co‐polymers with high molecular weights and narrow polydispersities are afforded. These novel wide‐bandgap polymers are evaluated as the semiconducting polymer in both organic field effect transistor and organic photovoltaic applications. The synthesized polymers reveal an optical bandgap in the range of 1.8 eV with an electron affinity of 3.6 eV which provides sufficient energy offset for electron transfer to PC70BM acceptors. In organic field effect transistors, the synthesized polymers demonstrate high hole mobilities of around 0.4 cm2 V–1 s–1. By using a blend of NDT‐BT with PC70BM as absorber layer in organic bulk heterojunction solar cells, power conversion efficiencies of 7.5% are obtained. This value is among the highest obtained for polymers with a wider bandgap (larger than 1.7 eV), making this polymer also interesting for application in tandem or multijunction solar cells.  相似文献   

13.
Recently, 2D monolayer films of conjugated polymers have gained increasing attention owing to the preeminence of 2D inorganic films that exhibit unique optoelectronic and mechanical properties compared to their bulk analogs. Despite numerous efforts, crystallization of semiconducting polymers into highly ordered 2D monolayer films still remains challenging. Herein, a dynamic‐template‐assisted meniscus‐guided coating is utilized to fabricate continuous, highly ordered 2D monolayer films of conjugated polymers over a centimeter scale with enhanced backbone π–π stacking. In contrast, monolayer films printed on solid substrates confer upon the 1D fiber networks strong alkyl side‐chain stacking at the expense of backbone packing. From single‐layers to multilayers, the polymer π‐stacks change from edge‐on to bimodal orientation as the film thickness reaches ≈20 nm. Spectroscopic and cyclic voltammetry analysis reveals an abrupt increase in J‐aggregation and absorption coefficient and a decrease in bandgap and highest occupied molecular orbital level until critical thickness, possibly arising from the straightened polymer backbone. This is corroborated by an abrupt increase in hole mobility with film thickness, reaching a maximum of 0.7 cm2 V?1 s?1 near the critical thickness. Finally, fabrication of chemical sensors incorporating polymer films of various thicknesses is demonstrated, and an ultrahigh sensitivity of the ≈7 nm thick ultrathin film (bilayers) to 1 ppb ammonia is shown.  相似文献   

14.
A new process is presented that combines nanoimprint lithography and soft lithography to assemble metal–bridge–metal crossbar junctions at ambient conditions. High density top and bottom metal electrodes with half‐pitches down to 50 nm are fabricated in a parallel process by means of ultraviolet nanoimprint lithography. The top electrodes are realized on top of a sacrificial layer and are embedded in a polymer matrix. The lifting of the top electrodes by dissolving the sacrificial layer in an aqueous solution results in printable electrode stamps. Crossbar arrays are noninvasively assembled with high yield by printing the top electrode stamps onto bare or modified bottom electrodes. A semiconducting and a quasi metal like conducting type of polymer are incorporated in the cross points to form metal‐polymer‐metal junctions. The electrical characterization of the printed junctions revealed that the functional integrity of the electrically addressed conductive polymers is conserved during the assembling process. These findings suggest that printing of electrodes represents an easy and cost effective route to highly integrated nanoscale metal‐bridge‐metal junctions if imprint lithography is used for electrode fabrication.  相似文献   

15.
Mechanical failure of π‐conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack propagation. Here, the first tear‐resistant and room‐temperature self‐healable semiconducting composite is presented, consisting of conjugated polymers and butyl rubber elastomers. This new composite displays both a record‐low elastic modulus (<1 MPa) and ultrahigh deformability with fracture strain above 800%. More importantly, failure behavior is not sensitive to precut notches under deformation. Autonomous self‐healing at room temperature, both mechanical and electronic, is demonstrated through the physical contact of two separate films. The composite film also shows device stability in the ambient environment over 5 months due to much‐improved barrier property to both oxygen and water. Butyl rubber is broadly applicable to various p‐type and n‐type semiconducting polymers for fabricating self‐healable electronics to provide new resilient electronics that mimic the tear resistance and healable property of human skin.  相似文献   

16.
Electronic devices with an polystyrene (PS) layer blended with Au nanoparticles capped with conjugated 2-naphthalenethiol (Au–2NT NPs) sandwiched between Au and Al electrodes exhibit bipolar resistive switches sensitive to the electrodes. This paper reports the effects of materials, including electrode materials, capping ligands of Au nanoparticles and matrix polymers, on the electrical behavior of the polymer:nanoparticle memory devices. Although the devices using Cu to replace Au as the top electrode exhibit resistive switches similar to those with Au, the threshold voltage for the resistive switch is higher, and the current density for the devices in the low conductivity state is lower. However, the threshold voltage and the current density are almost the same as those with Au as the top electrode, when a semiconductor, MoO3, is used to replace Au as the top electrode of the devices. The effects of these electrodes are attributed to the charge transfer at the contacts between Au–2NT NPs and the electrodes. The resistive switches are also sensitive to the capping organic ligand of the Au nanoparticles. The threshold voltage decreases and the current density increases, when conjugated benzenethiol is used to replace 2-naphthalenethiol. However, the current density dramatically decreases and the threshold voltage increases, when 2-benzeneethanethiol, a partially conjugated molecule, is adopted as the capping ligand of the Au nanoparticles. The effect of the capping ligands is ascribed to their effect on the charge tunneling across the Au–2NT NPs in the active layer and the contacts between Au–2NT NPs and electrodes. The devices with poly(methyl methacrylate) (PMMA) replacing PS as the polymer matrix exhibit resistive switches almost the same as those with PS, which indicates that the Au–2NT NPs rather than the polymer is the active material responsible for the resistive switches.  相似文献   

17.
Scanning force microscopy (SFM) is used to study the surface morphology of spin‐coated thin films of the ion‐transport polymer poly(ethylene oxide) (PEO) blended with either cyclodextrin (CD)‐threaded conjugated polyrotaxanes based on poly(4,4′‐diphenylene‐vinylene) (PDV), β‐CD–PDV, or their uninsulated PDV analogues. Both the polyrotaxanes and their blends with PEO are of interest as active materials in light‐emitting devices. The SFM analysis of the blended films supported on mica and on indium tin oxide (ITO) reveals in both cases a morphology that reflects the substrate topography on the (sub‐)micrometer scale and is characterized by an absence of the surface structure that is usually associated with phase segregation. This observation confirms a good miscibility of the two hydrophilic components, when deposited by using spin‐coating, as suggested by the luminescence data on devices and thin films. Clear evidence of phase segregation is instead found when blending PEO with a new organic‐soluble conjugated polymer such as a silylated poly(fluorene)‐alt‐poly(para‐phenylene) based polyrotaxane (THS–β‐CD–PF–PPP). The results obtained are relevant to the understanding of the factors influencing the interfacial and the intermolecular interactions with a view to optimizing the performance of light‐emitting diodes, and light‐emitting electrochemical cells based on supramolecularly engineered organic polymers.  相似文献   

18.
Crossbar‐type bipolar resistive memory devices based on low‐temperature amorphous TiO2 (a‐TiO2) thin films are very promising devices for flexible nonvolatile memory applications. However, stable bipolar resistive switching from amorphous TiO2 thin films has only been achieved for Al metal electrodes that can have severe problems like electromigration and breakdown in real applications and can be a limiting factor for novel applications like transparent electronics. Here, amorphous TiO2‐based resistive random access memory devices are presented that universally work for any configuration of metal electrodes via engineering the top and bottom interface domains. Both by inserting an ultrathin metal layer in the top interface region and by incorporating a thin blocking layer in the bottom interface, more enhanced resistance switching and superior endurance performance can be realized. Using high‐resolution transmission electron microscopy, point energy dispersive spectroscopy, and energy‐filtering transmission electron microscopy, it is demonstrated that the stable bipolar resistive switching in metal/a‐TiO2/metal RRAM devices is attributed to both interface domains: the top interface domain with mobile oxygen ions and the bottom interface domain for its protection against an electrical breakdown.  相似文献   

19.
A series of new donor–acceptor (D–A)‐type semiconducting conjugated polymers (SCPs), which can form cross‐linked structural and supramolecular assembly films by hydrogen‐bonding, is successfully synthesized. The microstructures of supramolecular assembly films are further investigated by X‐ray diffraction (XRD), high‐ resolution transmission electron microscopy (HRTEM), and variable‐temperature Fourier transform infrared (FT‐IR) absorption spectra. As electronic transmission (ET) materials, the SCPs demonstrate superior properties by means of fabricating electron‐only devices with the configuration of ITO/ET (SCPs)/Ca/Al. According to space‐charge‐limited current (SCLC) measurements, fluorine‐containing SCPs exhibit much smaller threshold voltages and much higher electron mobilities than Alq3. Meanwhile, a significant enhancement for their luminescence properties is verified by the photoluminescence (PL) and electroluminescent (EL) spectra of cross‐linked‐type SCPs, compared to non‐cross‐linked‐type SCPs. The fabricated polymer light‐emitting diodes (PLEDs) with the configuration of ITO/PEDOT:PSS/EML (SCPs)/BCP/LiF/Al are able to emit the color from green to red with moderately low turn‐on voltages. These results suggested that cross‐linked D–A‐type SCP can become a potential candidate as a kind of multifunctional materials applied in the field of optoelectronic devices.  相似文献   

20.
The game‐changing role of graphene oxide (GO) in tuning the excitonic behavior of conjugated polymer nanoparticles is described for the first time. This is demonstrated by using poly(3‐hexylthiophene) (P3HT) as a benchmark conjugated polymer and employing an in situ reprecipitation approach resulting in P3HT nanoparticles (P3HTNPs) with sizes of 50–100 nm in intimate contact with GO. During the self‐assembly process, GO changes the crystalline packing of P3HT chains in the forming P3HTNPs from H to H/J aggregates exhibiting exciton coupling constants as low as 2 meV, indicating favorable charge separation along the P3HT chains. Concomitantly, π–π interface interactions between the P3HTNPs and GO sheets are established resulting in the creation of P3HTNPs–GO charge‐transfer complexes whose energy bandgaps are lowered by up to 0.5 eV. Moreover, their optoelectronic properties, preestablished in the liquid phase, are retained when processed into thin films from the stable aqueous dispersions, thus eliminating the critical dependency on external processing parameters. These results can be transferred to other types of conjugated polymers. Combined with the possibility of employing water based “green” processing technologies, charge‐transfer complexes of conjugated polymer nanoparticles and GO open new pathways for the fabrication of improved optoelectronic thin film devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号