共查询到20条相似文献,搜索用时 13 毫秒
1.
Junxia Wang Yang Liu Yinchu Ma Chunyang Sun Wei Tao Yucai Wang Xianzhu Yang Jun Wang 《Advanced functional materials》2016,26(41):7516-7525
Near infrared (NIR) light‐activated supersensitive drug release via photothermal conversion is of particular interest due to its advantages in spatial and temporal control. However, such supersensitive drug release is rarely reported for polymeric nanoparticles. In this study, polymeric nanoparticles observed with flowable core can achieve NIR‐activated supersensitive drug release under the assistance of photothermal agent. It is demonstrated that only 5 s NIR irradiation (808 nm, 0.3 W cm?2) leads to 17.8% of doxorubicin (DOX) release, while its release is almost completely stopped when the NIR laser is switched off. In contrast, the control, poly(d ,l ‐lactide) nanoparticles with rigid cores, do not exhibit such supersensitive effect. It is demonstrated that intraparticle temperature is notably increased during photothermal conversion by detecting fluorescein lifetime using a time‐correlated single photon counting (TCSPC) technique, which is the main driving force for such supersensitive drug release from hydrophobic flow core. In contrast, rigid chain of nanoparticular core hinders drug diffusion. Furthermore, such NIR light‐activated supersensitive drug release is demonstrated, which significantly enhances its anticancer efficacy, resulting in overcoming of the resistance of cancer cells against DOX treatment in vitro and in vivo. This simple and highly universal strategy provides a new approach to fabricate NIR light‐activated supersensitive drug delivery systems. 相似文献
2.
Neuroendocrine Tumor‐Targeted Upconversion Nanoparticle‐Based Micelles for Simultaneous NIR‐Controlled Combination Chemotherapy and Photodynamic Therapy,and Fluorescence Imaging 下载免费PDF全文
Guojun Chen Renata Jaskula‐Sztul Corinne R. Esquibel Irene Lou Qifeng Zheng Ajitha Dammalapati April Harrison Kevin W. Eliceiri Weiping Tang Herbert Chen Shaoqin Gong 《Advanced functional materials》2017,27(8)
Although neuroendocrine tumors (NETs) are slow growing, they are frequently metastatic at the time of discovery and no longer amenable to curative surgery, emphasizing the need for the development of other treatments. In this study, multifunctional upconversion nanoparticle (UCNP)‐based theranostic micelles are developed for NET‐targeted and near‐infrared (NIR)‐controlled combination chemotherapy and photodynamic therapy (PDT), and bioimaging. The theranostic micelle is formed by individual UCNP functionalized with light‐sensitive amphiphilic block copolymers poly(4,5‐dimethoxy‐2‐nitrobenzyl methacrylate)‐polyethylene glycol (PNBMA‐PEG) and Rose Bengal (RB) photosensitizers. A hydrophobic anticancer drug, AB3, is loaded into the micelles. The NIR‐activated UCNPs emit multiple luminescence bands, including UV, 540 nm, and 650 nm. The UV peaks overlap with the absorption peak of photocleavable hydrophobic PNBMA segments, triggering a rapid drug release due to the NIR‐induced hydrophobic‐to‐hydrophilic transition of the micelle core and thus enabling NIR‐controlled chemotherapy. RB molecules are activated via luminescence resonance energy transfer to generate 1O2 for NIR‐induced PDT. Meanwhile, the 650 nm emission allows for efficient fluorescence imaging. KE108, a true pansomatostatin nonapeptide, as an NET‐targeting ligand, drastically increases the tumoral uptake of the micelles. Intravenously injected AB3‐loaded UCNP‐based micelles conjugated with RB and KE108—enabling NET‐targeted combination chemotherapy and PDT—induce the best antitumor efficacy. 相似文献
3.
Dendritic Platinum–Copper Alloy Nanoparticles as Theranostic Agents for Multimodal Imaging and Combined Chemophotothermal Therapy 下载免费PDF全文
Zhengjie Zhou Kewen Hu Rui Ma Yang Yan Bing Ni Yunjiao Zhang Longping Wen Qiang Zhang Yiyun Cheng 《Advanced functional materials》2016,26(33):5971-5978
Theranostic nanoparticles that possess multiple diagnostic modalities and allow spatiotemporally controlled therapies can significantly improve therapeutic outcomes and reduce adverse effects. Here, an intelligent and biocompatible theranostic formulation is developed based on dendritic platinum–copper alloy nanoparticles (DPCN) for cancer therapy. DPCN have excellent photothermal effect, and can load anticancer drugs such as doxorubicin in their porous structure and release the loaded drugs in response to near infrared light or moderate acidic stimulus. They also inherently have multimodal imaging modalities. Upon the guidance of photoacoustic imaging, DPCN‐mediated photothermal treatment efficiently inhibits tumor growth in vivo. Furthermore, doxorubicin‐loaded DPCN completely suppress the tumor growth even under a low treatment temperature, which avoids hypothermia‐induced damage to normal tissues. Our study develops an excellent theranostic nanoparticle with inherent multimodal imaging and therapeutic modalities for chemophotothermal cancer therapy. 相似文献
4.
Cancer Therapy: Dendritic Platinum–Copper Alloy Nanoparticles as Theranostic Agents for Multimodal Imaging and Combined Chemophotothermal Therapy (Adv. Funct. Mater. 33/2016) 下载免费PDF全文
Zhengjie Zhou Kewen Hu Rui Ma Yang Yan Bing Ni Yunjiao Zhang Longping Wen Qiang Zhang Yiyun Cheng 《Advanced functional materials》2016,26(33):5950-5950
5.
Quan Zhang Fang Liu Kim Truc Nguyen Xing Ma Xiaojun Wang Bengang Xing Yanli Zhao 《Advanced functional materials》2012,22(24):5144-5156
Multifunctional mesoporous silica nanoparticles are developed in order to deliver anticancer drugs to specific cancer cells in a targeted and controlled manner. The nanoparticle surface is functionalized with amino‐β‐cyclodextrin rings bridged by cleavable disulfide bonds, blocking drugs inside the mesopores of the nanoparticles. Poly(ethylene glycol) polymers, functionalized with an adamantane unit at one end and a folate unit at the other end, are immobilized onto the nanoparticle surface through strong β‐cyclodextrin/adamantane complexation. The non‐cytotoxic nanoparticles containing the folate targeting units are efficiently trapped by folate‐receptor‐rich HeLa cancer cells through receptormmediated endocytosis, while folate‐receptor‐poor human embryonic kidney 293 normal cells show much lower endocytosis towards nanoparticles under the same conditions. The nanoparticles endocytosed by the cancer cells can release loaded doxorubicin into the cells triggered by acidic endosomal pH. After the nanoparticles escape from the endosome and enter into the cytoplasm of cancer cells, the high concentration of glutathione in the cytoplasm can lead to the removal of the β‐cyclodextrin capping rings by cleaving the pre‐installed disulfide bonds, further promoting the release of doxorubicin from the drug carriers. The high drug‐delivery efficacy of the multifunctional nanoparticles is attributed to the co‐operative effects of folate‐mediated targeting and stimuli‐triggered drug release. The present delivery system capable of delivering drugs in a targeted and controlled manner provides a novel platform for the next generation of therapeutics. 相似文献
6.
Novel Redox‐Responsive Polymeric Magnetosomes with Tunable Magnetic Resonance Property for In Vivo Drug Release Visualization and Dual‐Modal Cancer Therapy 下载免费PDF全文
Zhongling Wang Xiangdong Xue Yixuan He Ziwei Lu Bei Jia Hao Wu Ye Yuan Yee Huang Han Wang Hongwei Lu Kit S. Lam Tzu‐Yin Lin Yuanpei Li 《Advanced functional materials》2018,28(33)
Monitoring of in vivo drug release from nanotheranostics by noninvasive approaches remains very challenging. Herein, novel redox‐responsive polymeric magnetosomes (PolyMags) with tunable magnetic resonance imaging (MRI) properties are reported for in vivo drug release monitoring and effective dual‐modal cancer therapy. The encapsulation of doxorubicin (DOX) significantly decreases PolyMags' T2‐contrast enhancement and transverse relaxation rate R2, depending on the drug loading level. The T2 enhancement and R2 can be recovered once the drug is released upon PolyMags' disassembly. T2‐ and T2*‐MRI and diffusion‐weighted imaging (DWI) are utilized to quantitatively study the correlation between MRI signal changes and drug release, and discover the MR tuning mechanisms. The in vivo drug release pattern is visualized based on such tunable MRI capability via monitoring the changes in T2‐weighted images, T2 and T2* maps, and R2 and R2* values. Interestingly, the PolyMags possess excellent photothermal effect, which can be further enhanced upon DOX loading. The PolyMags are highly efficacious to treat breast tumors on xenograft model with tumor‐targeted photothermal‐ and chemotherapy, achieving a complete cure rate of 66.7%. The concept reported here is generally applicable to other micellar and liposomal systems for image‐guided drug delivery and release applications toward precision cancer therapy. 相似文献
7.
Theranostic Prodrug Vesicles for Reactive Oxygen Species‐Triggered Ultrafast Drug Release and Local‐Regional Therapy of Metastatic Triple‐Negative Breast Cancer 下载免费PDF全文
Fangyuan Zhou Bing Feng Tingting Wang Dangge Wang Zhirui Cui Siling Wang Chunyong Ding Zhiwen Zhang Jian Liu Haijun Yu Yaping Li 《Advanced functional materials》2017,27(46)
A reactive oxygen species (ROS)‐activatable doxorubicin (Dox) prodrug vesicle (RADV) is presented for image‐guided ultrafast drug release and local‐regional therapy of the metastatic triple‐negative breast cancer (TNBC). RADV is prepared by integrating a ROS‐activatable Dox prodrug, a poly(ethylene glycol) (PEG)‐modified photosensitizer pyropheophorbide‐a, an unsaturated phospholipid 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine, and cholesterol into one single nanoplatform. RADV is of extremely high drug loading ratio (27.5 wt%) by self‐assembly of the phospholipid‐mimic Dox prodrug into the liposomal bilayer membrane. RADV displays good colloidal stability to prevent premature drug leakage during the blood circulation and inert photochemotoxicity to avoid nonspecific side effect. RADV passively accumulates at tumor site through the enhanced permeability and retention effect when administrated systemically. Once deposited at the tumor site, RADV generates fluorescent and photoacoustic signals to guide near‐infrared (NIR) laser irradiation, which can induce localized ROS generation, not only to trigger prodrug activation and ultrafast drug release but also conduct photodynamic therapy in a spatiotemporally controlled manner. In combination with NIR laser irradiation, RADV efficiently inhibits the tumor growth and distant metastasis of TNBC. Local‐regional tumor therapy using intelligent theranostic nanomedicine might provide an alternative option for highly efficient treatment of the metastatic TNBC. 相似文献
8.
Shaojun Peng Hao Wang Wei Zhao Yongjie Xin Yu Liu Xiangrong Yu Meixiao Zhan Shun Shen Ligong Lu 《Advanced functional materials》2020,30(23)
Zwitterionic polymers demonstrate as a class of antifouling materials with long blood circulation in living subjects. Despite extensive research on their antifouling abilities, the responsive zwitterionic polymers that can change their properties by mild outside signals are poorly explored. Herein, a sulfamide‐based zwitterionic monomer is developed and used to synthesize a series of polysulfamide‐based (poly (2‐((2‐(methacryloyloxy)ethyl) dimethylammonio)acetyl) (phenylsulfonyl) amide (PMEDAPA)) nanogels as drug carriers for effective cancer therapy. PMEDAPA nanogels are proved to exhibit prolonged blood circulation without inducing the accelerated blood clearance phenomenon. Intriguingly, PMEDAPA nanogels can sensitively respond to hyperthermia by adjusting the crosslinker degree. After modified with transferrin (Tf), the nanogels (PMEDAPA‐Tf) achieve shielded tumor targeting at normothermia, while exhibiting recovered tumor targeting at hyperthermia, leading to enhanced tumor accumulation. Meanwhile, PMEDAPA‐Tf nanogels show superior penetration ability in 3D tumor spheroids and faster drug release at hyperthermia compared with that at normothermia. In combination with mild microwave heating (≈41 °C), the drug‐loaded PMEDAPA‐Tf nanogels show a pronounced tumor inhibition effect in a humanized orthotropic liver cancer model. Therefore, the study provides a novel hyperthermia‐responsive zwitterionic nanogel that can achieve augmented tumor accumulation and on‐demand drug release assisted with clinically used microwave heating for cancer therapy. 相似文献
9.
10.
Lang Rao Guang‐Tao Yu Qian‐Fang Meng Lin‐Lin Bu Rui Tian Li‐Sen Lin Hongzhang Deng Weijing Yang Minghui Zan Jianxun Ding Andrew Li Haihua Xiao Zhi‐Jun Sun Wei Liu Xiaoyuan Chen 《Advanced functional materials》2019,29(51)
Cell membrane coating nanotechnology, which endows nanoparticles with unique properties, displays excellent translational potential in cancer diagnosis and therapy. However, the preparation and evaluation of these cell membrane‐coated nanoparticles are based on cell lines and cell‐line‐based xenograft mouse models. The feasibility of cell membrane‐camouflaged nanomaterials is tested in a preclinical setting. Head and neck squamous cell carcinoma (HNSCC) patient‐derived tumor cell (PDTC) membranes are coated onto gelatin nanoparticles (GNPs) and the resulting PDTC@GNPs show efficient targeting to homotypic tumor cells and tissues in patient‐derived xenograft (PDX) models. When the donor‐derived cell membrane of PDTC@GNPs matched those of the host cells, significant targeting capability is observed. In contrast, mismatch between the donor and host results in weak targeting. Furthermore, it is demonstrated that autologous separation and administration of cellular membranes and anticancer cisplatin (Pt)‐loaded PDTC@GNPs, respectively, lead to almost complete tumor ablation in a subcutaneous model and effectively inhibit tumor recurrence in a postsurgery model. The work presented here reinforces the translation of these biomimetic nanoparticles for clinical applications and offers a simple, safe, and effective strategy for personalized cancer treatment. 相似文献
11.
Polymer Nanoparticles Encased in a Cyclodextrin Complex Shell for Potential Site‐ and Sequence‐Specific Drug Release 下载免费PDF全文
Guillermo U. Ruiz‐Esparza Suhong Wu Victor Segura‐Ibarra Francisca E. Cara Kurt W. Evans Miljan Milosevic Arturas Ziemys Milos Kojic Funda Meric‐Bernstam Mauro Ferrari Elvin Blanco 《Advanced functional materials》2014,24(30):4753-4761
Time‐staggered combination chemotherapy strategies show immense potential in cell culture systems, but fail to successfully translate clinically due to different routes of administration and disparate formulation parameters that preclude a specific order of drug presentation. A novel platform consisting of drug‐containing PLGA polymer nanoparticles, stably fashioned with a shell composed of drug complexed with cationic cyclodextrin, capable of releasing drugs time‐ and sequence‐specifically within tumors is designed. Morphological examination of nanoparticles measuring 150 nm highlight stable and distinct compartmentalization of model drugs, rhodamine and bodipy, within the core and shell, respectively. Sequential release is observed in vitro, owing to cyclodextrin shell displacement and subsequent sustained release of core‐loaded drug, kinetics preserved in breast cancer cells following internalization. Importantly, time‐staggered release is corroborated in a murine breast cancer model following intravenous administration. Precise control of drug release order, site‐specifically, potentially opens novel avenues in polychemotherapy for synergy and chemosensitization strategies. 相似文献
12.
Versatile Prodrug Nanoparticles for Acid‐Triggered Precise Imaging and Organelle‐Specific Combination Cancer Therapy 下载免费PDF全文
Bing Feng Fangyuan Zhou Zhiai Xu Tingting Wang Dangge Wang Jianping Liu Yuanlei Fu Qi Yin Zhiwen Zhang Haijun Yu Yaping Li 《Advanced functional materials》2016,26(41):7431-7442
Integration of chemotherapy with photodynamic therapy (PDT) has been emerging as a novel strategy for treatment of triple negative breast cancer (TNBC). However, the clinical translation of this approach is hindered by the unwanted dark toxicity due to the “always‐on” model and low tumor specificity of currently approved photosensitizer (PS). Here, the design of a multifunctional prodrug nanoparticle (NP) is described for precise imaging and organelle‐specific combination cancer therapy. The prodrug NP is composed of a newly synthesized oxaliplatin prodrug, hexadecyl‐oxaliplatin‐trimethyleneamine (HOT), an acid‐activatable PS, derivative of Chlorin e6 (AC), and functionalized with a targeting ligand iRGD for tumor homing and penetration. HOT displays much higher antitumor efficiency than oxaliplatin by simultaneously inducing mitochondria depolarizing and DNA cross‐linking. AC is specifically activated in the orthotopic or metastatic TNBC tumor for fluorescence imaging and PDT, while it remains inert in blood circulation to minimize the dark toxicity. Under the guide of acid‐activatable fluorescence imaging, PDT and chemotherapy can be synergistically performed for highly efficient regression of TNBC. Taken together, this versatile prodrug nanoplatform could achieve tumor‐specific imaging and organelle‐specific combination therapy, which can provide an alternative option for cancer theranostic. 相似文献
13.
Light‐Responsive,Singlet‐Oxygen‐Triggered On‐Demand Drug Release from Photosensitizer‐Doped Mesoporous Silica Nanorods for Cancer Combination Therapy 下载免费PDF全文
Guangbao Yang Xiaoqi Sun Jingjing Liu Liangzhu Feng Zhuang Liu 《Advanced functional materials》2016,26(26):4722-4732
Smart drug delivery systems with on‐demand drug release capability are rather attractive to realize highly specific cancer treatment. Herein, a novel light‐responsive drug delivery platform based on photosensitizer chlorin e6 (Ce6) doped mesoporous silica nanorods (CMSNRs) is developed for on‐demand light‐triggered drug release. In this design, CMSNRs are coated with bovine serum albumin (BSA) via a singlet oxygen (SO)‐sensitive bis‐(alkylthio)alkene (BATA) linker, and then modified with polyethylene glycol (PEG). The obtained CMSNR‐BATA‐BSA‐PEG, namely CMSNR‐B‐PEG, could act as a drug delivery carrier to load with either small drug molecules such as doxorubicin (DOX), or larger macromolecules such as cis‐Pt (IV) pre‐drug conjugated third generation dendrimer (G3‐Pt), both of which are sealed inside the mesoporous structure of nanorods by BSA coating. Upon 660 nm light irradiation with a rather low power density, CMSNRs with intrinsic Ce6 doping would generate SO to cleave BATA linker, inducing detachment of BSA‐PEG from the nanorod surface and thus triggering release of loaded DOX or G3‐Pt. As evidenced by both in vitro and in vivo experiments, such CMSNR‐B‐PEG with either DOX or G3‐Pt loading offers remarkable synergistic therapeutic effects in cancer treatment, owing to the on‐demand release of therapeutics specifically in the tumor under light irradiation. 相似文献
14.
Polylactide‐block‐Polypeptide‐block‐Polylactide Copolymer Nanoparticles with Tunable Cleavage and Controlled Drug Release 下载免费PDF全文
Robert Dorresteijn Nils Billecke Mischa Schwendy Sabine Pütz Mischa Bonn Sapun H. Parekh Markus Klapper Klaus Müllen 《Advanced functional materials》2014,24(26):4026-4033
A versatile nanoparticle system is presented in which drug release is triggered by enzymatic polymer cleavage, resulting in a physicochemical change of the carrier. The polylactide‐block‐peptide‐block‐polylactide triblock copolymer is generated by initiation of the ring‐opening polymerization of L‐lactide with a complex bifunctional peptide having an enzymatic recognition and cleavage site (Pro‐Leu‐Gly‐Leu‐Ala‐Gly). This triblock copolymer is specifically bisected by matrix metalloproteinase‐2 (MMP‐2), an enzyme overexpressed in tumor tissues. Triblock copolymer nanoparticles formed by nonaqueous emulsion polymerization are readily transferred into aqueous media without aggregation, even in the presence of blood serum. Cleavage of the triblock copolymer leads to a significant decrease of the glass transition temperature (Tg) from 39 °C to 31 °C, likely mediating cargo release under physiological conditions. Selective drug targeting is demonstrated by hampered mitosis and increased cell death resulting from drug release via MMP‐2 specific cleavage of triblock copolymer carrier. On the contrary, nanocarriers having a scrambled (non‐recognizable) peptide sequence do not cause enhanced cytotoxicity, demonstrating the enzyme‐specific cleavage and subsequent drug release. The unique physicochemical properties, cleavage‐dependent cargo release, and tunability of carrier bioactivity by simple peptide exchange highlight the potential of this polymer‐nanoparticle concept as platform for custom‐designed carrier systems. 相似文献
15.
Shang‐Hsiu Hu Dean‐Mo Liu Wei‐Lin Tung Chen‐Fu Liao San‐Yuan Chen 《Advanced functional materials》2008,18(19):2946-2955
Surfactant‐free, self‐assembled iron oxide/silica core–shell (SAIO@SiO2) nanocarriers were synthesized as bifunctional magnetic vectors that can be triggered for the controlled release of therapeutic agents by an external magnetic field. In addition, drug release profiles can be well‐regulated through an ultrathin layer of silica shell. The hydrophobic drug molecules were encapsulated within the iron oxide‐PVA core and then further covered with a thin‐layer silica shell to regulate the release pattern. Remote control of drug release from the SAIO@SiO2 nanocarriers was achieved successfully using an external magnetic field where the core phase being structurally disintegrated to a certain extent while subjected to magnetic stimulus, resulting in a burst release of the encapsulated drug. However, a relatively slow and linear release restored immediately, directly after removal of the stimulus. The nanostructural evolution of the nanocarriers upon the stimulus was examined and the mechanism for controlled drug release is proposed for such a core–shell nanocarrier. Surprisingly, the surfactant‐free SAIO@SiO2 nanocarriers demonstrated a relatively high uptake efficiency from the HeLa cell line. Together with a well‐regulated controlled release design, the nanocarriers may provide great advantages as an effective cell‐based drug delivery nanosystem for biomedical applications. 相似文献
16.
Remotely Controlled Red Blood Cell Carriers for Cancer Targeting and Near‐Infrared Light‐Triggered Drug Release in Combined Photothermal–Chemotherapy 下载免费PDF全文
Xiaoqi Sun Chao Wang Min Gao Aiyan Hu Zhuang Liu 《Advanced functional materials》2015,25(16):2386-2394
Red blood cells (RBCs), the “innate carriers” in blood vessels, are gifted with many unique advantages in drug transportation over synthetic drug delivery systems (DDSs). Herein, a tumor angiogenesis targeting, light stimulus‐responsive, RBC‐based DDS is developed by incorporating various functional components within the RBC platform. An albumin bound near‐infrared (NIR) dye, together with a chemotherapy drug doxorubicin, is encapsulated inside RBCs, the surfaces of which are modified with a targeting peptide to allow cancer targeting. Under stimulation by an external NIR laser, the membrane of the RBCs would be destroyed by the light‐induced photothermal heating, resulting in effective drug release. As a proof of principle, RBC‐based cancer cell targeted drug delivery and light‐controlled drug release is demonstrated in vitro, achieving a marked synergistic therapeutic effect through the combined photothermal–chemotherapy. This work presents a novel design of smart RBC carriers, which are inherently biocompatible, promising for targeted combination therapy of cancer. 相似文献
17.
Ly6Chi Monocytes Delivering pH‐Sensitive Micelle Loading Paclitaxel Improve Targeting Therapy of Metastatic Breast Cancer 下载免费PDF全文
Tianqun Lang Xinyue Dong Yan Huang Wei Ran Qi Yin Pengcheng Zhang Zhiwen Zhang Haijun Yu Yaping Li 《Advanced functional materials》2017,27(26)
Many immune cells are capable of homing to sites of disease and eradicating infections and abnormal cells. However, their efficacy is usually down‐regulated in tumor microenvironments and it is difficult to boost. It is presumed that the anticancer activity of immune cells can be improved by integrating an additional therapeutic modality such as chemotherapy into the cells. Here, Ly6Chi monocytes armed with the paclitaxel (PTX)‐loading pH‐sensitive micelle (PM), termed as PM@MC, are prepared. The PM internalization does not significantly affect the properties of the host Ly6Chi monocytes. In the 4T1 metastatic breast cancer mice model, PM@MCs home to both primary tumor and the lung metastasis foci. PM@MC exhibit 15‐fold higher intratumor PTX accumulation than the commercial PTX injection, and achieve a tumor inhibiting rate of 96.8% and a lung metastasis suppression rate of 99.2%. No significant change is recorded in histology of major organs and in hematological and biochemical parameters after PM@MC treatment. The pH‐sensitive micelle/Ly6Chi monocyte drug delivery device thus has the application potential in the targeting therapy of breast cancer with metastasis. 相似文献
18.
Yujie Zhang Xi Zhu Xinli Chen Qinjun Chen Wenxi Zhou Qin Guo Yifei Lu Chao Li Yu Zhang Donghui Liang Tao Sun Xunbin Wei Chen Jiang 《Advanced functional materials》2019,29(13)
The frequent relapse and metastasis characteristics of triple negative breast cancer (TNBC) make it a fraught issue with very poor prognosis in clinic. An effective treatment for TNBC should prevent and even eliminate metastasis as well as suppress primary lesion expansion. Recent progress reveals that platelets can be recruited and activated by tumor cells through intercellular adhesion molecules (ICAM), and help aggressive circulating tumor cells (CTCs) form metastasis. Therefore, activated platelets are considered with possession of tumor‐homing, CTC‐capturing, and metastasis‐targeting abilities. In this work, a P‐selectin (expressed on activated platelet surface) targeting peptide (PSN) is modified on a redox‐responsive paclitaxel‐loaded micelle (PSN‐PEG‐SS‐PTX4 micelle) to utilize activated platelets as a “bridge” for interaction with cancer cells. The PSN‐modified micelle can easily adhere to the surface of activated platelets and subsequently capture CTCs in blood circulation. Compared to Taxol and PEG‐SS‐PTX4 micelle, PSN‐PEG‐SS‐PTX4 micelle also exhibits enhanced primary TNBC/metastasis targeting and penetrating effect through binding with tumor infiltrating platelets and thus significantly improves treatment outcome. More importantly, PSN‐PEG‐SS‐PTX4 micelle potently suppressed lung metastasis of TNBC and reduced incidence of distant liver metastasis. The activated platelet‐targeting redox‐responsive micelle system provides a promising prospect for the omnidirectional treatment of metastatic cancer. 相似文献
19.
Ting‐Yu Liu Kun‐Ho Liu Dean‐Mo Liu San‐Yuan Chen I‐Wei Chen 《Advanced functional materials》2009,19(4):616-623
Self‐assembled nanocapsules containing a hydrophilic core and a crosslinked yet thermosensitive shell are successfully prepared using poly(ethylene‐oxide)‐poly(propylene‐oxide)‐poly(ethylene‐oxide) block copolymers, 4‐nitrophenyl chloroformate, gelatin, and 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide. The core is further rendered magnetic by incorporating iron oxide nanoparticles via internal precipitation to enable externally controlled actuation under magnetic induction. The spherical nanocapsules exhibit a hydrophilic‐to‐hydrophobic transition at a characteristic but tunable temperature reaching 40 °C, triggering a size contraction and shrinkage of the core. The core content experiences very little leakage at 25 °C, has a half life about 5 h at 45 °C, but bursts out within a few minutes under magnetic heating due to iron oxide coarsening and core/shell disruption. Such burst‐like response may be utilized for controlled drug release as illustrated here using a model drug Vitamin B12. 相似文献
20.
Xiaotong Yang Chuan Hu Fan Tong Rui Liu Yang Zhou Lin Qin Liang Ouyang Huile Gao 《Advanced functional materials》2019,29(32)
The application of combinational therapy makes up for the limitation of monotherapy and achieves superior treatment against cancer. However, the combinational therapy remains restricted by the poor tumor‐specific delivery and the abscopal effect. Herein, reactive oxygen species (ROS)‐responsive PEGylated bilirubin nanoparticles (BRNPs) are developed to encapsulate two glutathione‐activatable drugs, including dimer‐7‐ethyl‐10‐hydroxycamptothecin (d‐SN38) and dimer‐lonidamine (d‐LND). Dimerization of the drugs significantly increases the drug loading capacity and the encapsulation efficiency of nanoparticles. With the assistance of iRGD peptide (cRGDKGPDC), the cellular uptake of BRNPs is more than double when compared with the control. In response to high levels of intracellular ROS, d‐SN38 and d‐LND are rapidly released from nanoparticles (SL@BRNPs). Furthermore, the pharmacodynamic experiments verify combining SL@BRNPs with anti‐PD‐L1 antibody greatly inhibits the primary tumor of breast cancer, improves CD8+ T cells levels, and CD8+ T cells/Tregs ratios in the tumor. Additionally, it shows high immune memory effect and can prevent the growth of lung metastasis. Taken together, the strategy pioneers a new way for the rational design of nanoassemblies through the combination of activatable drug dimers and stimuli‐responsive drug release, and a successful application of novel drug delivery systems in combination with the immune checkpoint blockade antibody. 相似文献