首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For mitochondria‐targeting delivery, a coupling reaction between poly(ε‐caprolactone) diol (PCL diol) and 4‐carboxybutyltriphenylphosphonium (4‐carboxybutyl TPP) results in the synthesis of amphiphilic TPP‐PCL‐TPP (TPCL) polymers with a bola‐like structure. In aqueous environments, the TPCL polymer self‐assembled via cosolvent dispersion and film hydration, resulting in the formation of cationic nanoparticles (NPs) less than 50 nm in size with zeta‐potentials of approximately 40 mV. Interestingly, different preparation methods for TPCL NPs result in various morphologies such as nanovesicles, nanofibers, and nanosheets. In vitro cytotoxicity results with TPCL NPs indicate IC50 values of approximately 10–60 μg mL?1, suggesting their potential as anticancer nanodrugs. TPCL NPs can be loaded both with hydrophobic doxorubicin (Dox) and its hydrophilic salt form (Dox·HCl), and their drug loading contents are approximately 2–10 wt% depending on the loading method and the hydrophilicity/hydrophobicity of the drugs. Although Dox·HCl exhibits more cellular and nuclear uptake, resulting in greater antitumor effects than Dox, most drug‐loaded TPCL NPs exhibit higher mitochondrial uptake and approximately 2–7‐fold higher mitochondria‐to‐nucleus preference than free drugs, resulting in superior (approximately 7.5–18‐fold) tumor‐killing activity for most drug‐loaded TPCL NPs compared with free drugs. In conclusion, TPCL‐based nanoparticles have potential both as antitumor nanodrugs themselves and as nanocarriers for chemical therapeutics.  相似文献   

2.
Nanoparticular drug delivery systems may help to overcome the limitations of conventional chemotherapy. They have been reported to improve the specificity of distribution, the bioavailability, and the solubility of drugs, as well as the duration of drug efficacy, and helping to overcome multidrug resistance. Although various polymeric nanoparticles have been developed for delivery of anticancer agents, most nanoparticles still focus on solubilizing drugs, improving targeting ability, and reducing side effects. In particular, targeting to the tumor is typically improved through passive or active targeting. Despite great achievements in both strategies, yet to be resolved are issues of toxicity in normal cells and enhancement of tumor‐specificity. A new approach combining the dual strategies of passive tumor targeting and cancer‐selective efficacy is proposed. Recombinant human gelatin conjugated with lipoic acid (rHG‐LA) developed in this study forms nanoparticles spontaneously in aqueous solution and encapsulates alpha‐tocopheryl succinate (α‐TOS), a well‐known cancer‐selective apoptosis‐inducing agent, within a hydrophobic core during the self‐assembly. This study describes the promising applicability of α‐TOS‐loaded rHG‐LA nanoparticles with passive targeting ability and cancer‐specificity.  相似文献   

3.
A novel photo‐responsive drug carrier that doubles as a photothermal agent with a nanocookie‐like structure is constructed by coating amorphous carbon on a mesoporous silica support self‐assembled on a sheet of reduced graphene oxide. With a large payload (0.88 mmolg?1) of a hydrophobic anticancer drug, (S)‐(+)‐camptothecin (CPT), nanocookies simultaneously provide a burst‐like drug release and intense heat upon near‐infrared exposure. Being biocompatible yet with a high efficiency for cell uptake, nanocookies have successfully eradicated subcutaneous tumors in 14 days following a single 5 min NIR irradiation without distal damage. These results demonstrate that the nanocookie is an excellent new delivery platform for local, on‐demand, NIR‐responsive, combined chemotherapy/hyperthermia for tumor treatment and other biomedical applications.  相似文献   

4.
Nanotechnology‐based diagnostics and therapeutics usually suffer from long‐term retention of nanosized devices in the major organs, which may cause unwanted side effects. Herein, we describe the development of ultra‐small silica‐polymer hybrid dots (Sdots) through the self‐assembly between a polyethylene oxide‐poly(propylene oxide)‐polyethylene oxide (PEO‐PPO‐PEO) triblock copolymer and a silica precursor. Sdots feature a silica particle size of 4.2 nm and a hydrated size of 14 nm. The larger hydrated size is related to their polyethylene glycol (PEG) surface ligands, which evolve from the PEO blocks in the copolymer. The densely packed PEG corona can effectively shield the hybrid from reticuloendothelial uptake, which gives rise to rapid and thorough hepatobiliary clearance. In vivo experiments demonstrated that, upon intravenous injection, almost complete clearance of Sdots from mouse bodies could be realized through hepatobiliary excretion within only 5 days. Compared to renal clearable nanoparticles with short blood‐circulation times, the proposed Sdots have a prolonged blood‐circulation half‐life of 19 h, so that the Sdots could effectively accumulate at a subcutaneous transplanted tumor through enhanced penetration and retention. As the PPO core of the Sdots can be utilized to accommodate hydrophobic guest molecules, such as anticancer drugs, these Sdots can prospectively serve as fast‐clearable drug carriers for targeted cancer treatment.  相似文献   

5.
Herein, multifunctional mimics of viral architectures and infections self‐assembled from tailor‐made dendritic lipopeptides for programmed targeted drug delivery are reported. These viral mimics not only have virus‐like components and nanostructures, but also possess virus‐like infections to solid tumor and tumor cells. Encouragingly, the viral mimics provide the following distinguished features for tumor‐specific systemic delivery: i) stealthy surface to resist protein interactions and prolong circulation time in blood, ii) well‐defined nanostructure for passive targeting to solid tumor site, iii) charge‐tunable shielding for tumor extracellular pH targeting, iv) receptor‐mediated targeting to enhance tumor‐specific uptake, and v) supramolecular lysine‐rich architectures mimicking viral subcellular targeting for efficient endosomal escape and nuclear delivery. This bioinspired design make in vivo tumor suppression by drug‐loaded viral mimics against BALB/c mice bearing 4T1 tumor greatly exceed the positive control group (more than three times). More importantly, viral mimics hold great potentials to reduce side effects and decrease tumor metastasis after systemic administration.  相似文献   

6.
Achieving cellular internalization and endosomal escape remains a major challenge for many antitumor therapeutics, especially macromolecular drugs. Viral drug carriers are reported for efficient intracellular delivery, but with limited choices of payloads. In this study, a novel polymeric nanoparticle (ADMAP) is developed, resembling the structure and functional features of a virus. ADMAP is synthesized by grafting endosomolytic poly(lauryl methacrylate‐co‐methacrylic acid) on acetalated dextran. The endosomolytic polymer mimics the capsid protein for endosomal escape, and acetalated dextran resembles the viral core for accommodating payloads. After polymer synthesis, the subsequent controlled nanoprecipitation on a microfluidic device yields uniform nanoparticles with high encapsulation efficiency. At late endosomal pH (5.0), the ADMAP particles successfully destabilize endosomal membranes and release the drug payloads synergistically, resulting in a greater therapeutic efficacy compared with that of free anticancer drugs. Further conjugation of a tumor‐penetrating peptide enhances the antitumor efficacy toward 3D spheroids and finally leads to spheroid disintegration. The unique structure along with the synergistic endosomal escape and drug release make ADMAP nanoparticles favorable for intracellular delivery of antitumor therapeutics.  相似文献   

7.
Efficient nuclear delivery of anticancer drugs evading drug efflux transporters (DETs) on the plasma and nuclear membranes of multidrug‐resistant cancer cells is highly challenging. Here, smart nanogels are designed via a one‐step self‐assembly of three functional components including a biocompatible copolymer, a fluorescent organosilica nanodot, and a photodegradable near‐infrared (NIR) dye indocyanine green (ICG). The rationally designed nanogels have high drug encapsulation efficiency (≈99%) for anticancer drug doxorubicin (Dox), self‐traceability for bioimaging, proper size for passive tumor targeting, prolonged blood circulation time for enhanced drug accumulation in tumor, and photocontrolled disassemblability. Moreover, the Dox‐loaded nanogels can effectively kill multidrug‐resistant cells via two steps: 1) They behave like a “Trojan horse” to escape from the DETs on the plasma membrane for efficiently transporting the anticancer “soldier” (Dox) into the cytoplasm and preventing the drugs from being excreted from the cells; 2) Upon NIR light irradiation, the photodegradation of ICG leads to the disassembly of the nanogels to release massive Dox molecules, which can evade the DETs on the nuclear membrane to exert their intranuclear efficacy in multidrug‐resistant cells. Combined with their excellent biocompatibility, the nanogels may provide an alternative solution for overcoming cancer multidrug resistance.  相似文献   

8.
To achieve on‐demand drug release, mesoporous silica nanocarriers as antitumor platforms generally need to be gated with stimuli‐responsive capping agents. Herein, a “smart” mesoporous nanocarrier that is gated by the drug itself through a pH‐sensitive dynamic benzoic–imine covalent bond is demonstrated. The new system, which tactfully bypasses the use of auxiliary capping agents, could also exhibit desirable drug release at tumor tissues/cells and enhanced tumor inhibition. Moreover, a facile dynamic PEGylation via benzoic–imine bond further endows the drug‐self‐gated nanocarrier with tumor extracellular pH‐triggered cell uptake and improves therapeutic efficiency in vivo. In short, the paradigm shift in capping agents here will simplify mesoporous nanomaterials as intelligent drug carriers for cancer therapy. Moreover, the self‐gated strategy in this work also shows general potential for self‐controlled delivery of natural biomolecules, for example, DNA/RNA, peptides, and proteins, due to their intrinsic amino groups.  相似文献   

9.
The FOLFIRINOX regimen, a combination of three chemotherapy agents (5‐fluorouracil, irinotecan, oxaliplatin) and folinic acid (a vitamin B derivatives reducing the side effect of 5‐fluorouracil), has proved to be effective in the treatment of pancreatic cancer, and is more efficacious than the long‐term reference standard, gemcitabine. However, the FOLFIRINOX is associated with high‐grade toxicity, which markedly limits its clinical application. Encapsulation of drugs in nanocarriers that selectively target cancer cells promises to be an effective method for co‐delivery of drug combinations and to mitigate the side effects of conventional chemotherapy. Here we reported the development of multiple layer‐by‐layer lipid‐polymer hybrid nanoparticles with targeting capability that show excellent biocompatibility and synergistically combine the favorable properties of liposomes and polymer nanoparticles. Relative to nanoparticles consisting of polymer alone, these novel nanocarriers have a long half‐life in vivo and a higher stability in serum. The nanocarriers were loaded with the three active antitumor constituents of FOLFIRINOX regimen. Little drugs were released from the nanoparticles in phosphate buffered saline (PBS) solution, but the cargoes were quickly released after the nanoparticles were taken up by tumor cells. These innovative drug‐loaded nanoparticles achieved higher antitumor efficacy and showed minimal side effects compared with the FOLFIRINOX regimen alone. Our study suggested that the multiple layer‐by‐layer hybrid nanoparticles have great potential for improving the chemotherapeutic efficacy for the patients with pancreatic cancer. This platform also provides new opportunities for tailored design of nanoparticles that may offer therapeutics benefits for a range of other tumors.  相似文献   

10.
Layer‐by‐layer (LbL) self‐assemblies have inherent potential as dynamic coatings because of the sensitivity of their building blocks to external stimuli. Here, humidity serves as a feasible trigger to activate the self‐healing of a microporous polyethylenimine/poly(acrylic acid) multilayer film. Microporous structures within the polyelectrolyte multilayer (PEM) film are created by acid treatment, followed by freeze‐drying to remove water. The self‐healing of these micropores can be triggered at 100% relative humidity, under which condition the mobility of the polyelectrolytes is activated. Based on this, a facile and versatile method is suggested for directly integrating hydrophobic drugs into PEM films for surface‐mediated drug delivery. The high porosity of microporous film enables the highest loading (≈303.5 μg cm?2 for a 15‐bilayered film) of triclosan to be a one‐shot process via wicking action and subsequent solvent removal, thus dramatically streamlining the processes and reducing complexities compared to the existing LbL strategies. The self‐healing of a drug‐loaded microporous PEM film significantly reduces the diffusion coefficient of triclosan, which is favorable for the long‐term sustained release of the drug. The dynamic properties of this polymeric coating provide great potential for its use as a delivery platform for hydrophobic drugs in a wide variety of biomedical applications.  相似文献   

11.
Physical delivery of anticancer drugs in controlled anatomic locations can complement the advances being made in chemo‐selective therapies. To this end, an optical fiber catheter is coated in a thin layer of metal organic framework UiO‐66 and the anticancer drug 5‐Fluorouracil (5‐FU) is deposited within the pores. Delivery of light of appropriate wavelength through the fiber catheter is found to trigger the release of 5‐FU on demand, offering a new route to localized drug administration. The system exhibits great potential with as much as 110 × 10?6 m of 5‐FU delivered within 1 min from one fiber.  相似文献   

12.
Peptide‐drug conjugates are prodrugs that have the advantages of precise molecular structure and the direct exploitation of tumor‐homing, penetration or the cellular uptake abilities of the peptides such as the neuropilin‐1 receptor targeting peptide. The prodrugs generally have fast blood clearance due to their low molecular weights and thus are made to self‐assemble into nanostructures, preferably nanosized micelles and vesicles for intravenous administration, to slow their renal clearance. However, most peptidyl prodrugs usually form precipitates, irregular nanofibers or gels that are unsuitable for intravenous injection. Herein, a arginine‐glycine‐aspartic acid‐lysine (RGDK) peptide and cytotoxin 7‐ethyl‐10‐hydroxycamptothecin (SN38) are used to synthesize the tumor‐homing prodrugs (SN38‐Peps) and explore their structure–micelle formation relationships. A small library of SN38‐Peps is obtained using different structures of peptides, linkers, and drug conjugation sites, and the factors affecting the assembly of SN38‐Peps as well as the stability of formed micelles are investigated. An optimized SN38‐Pep, (MOM)SN38(20)‐CRGDK, is finally obtained which forms stable micelles with a hydrodynamic diameter around 110 nm and a fixed drug loading content as high as 35%. The micelles show a prolonged blood circulation, significantly enhanced tumor accumulation, and therefore improved anticancer activity as compared to the non‐targeting prodrug and a clinically used anticancer drug.  相似文献   

13.
Tumor angiogenesis is a hallmark of tumor growth and metastasis, and inhibition of tumor angiogenesis is an effective strategy for tumor therapy. The high expression levels of specific biomarkers such as integrin receptors (e.g., αvβ3) in the endothelium of tumor vessels make angiogenesis an ideal target for drug delivery and thus tumor therapy. Herein, a new nanodrug (T&D@RGD‐Ag2S) is presented, which can effectively inhibit tumor growth by integrating the specific recognition peptide cyclo(Arg‐Gly‐Asp‐d‐Phe‐Cys) (cRGD) for tumor vascular targeting, the broad‐spectrum endothelial inhibitor O‐(chloroacetyl‐carbamoyl) fumagillol (TNP‐470), and chemotherapeutic drug doxorubicin (DOX) for synergetic tumor therapy. The results show that the T&D@RGD‐Ag2S nanodrug rapidly and specifically binds to the tumor vasculature after intravenous injection. Tumor vascular density is greatly reduced following effective angiogenesis inhibition by TNP‐470. Meanwhile, increased delivery of DOX deep into the tumor induces extensive tumor apoptosis, resulting in remarkable tumor growth inhibition in a human U87‐MG malignant glioma xenograft model. In addition, the therapeutic effects of T&D@RGD‐Ag2S on inhibiting tumor growth and decreasing vessel density are monitored in situ using near‐infrared II (NIR‐II) fluorescence imaging of Ag2S quantum dots. This tumor vasculature‐targeted strategy can be extended as a general method for treating a broad range of tumors and holds promise for future clinical applications.  相似文献   

14.
The rapid clearance of circulating nanocarriers in blood during systemic drug delivery remains a challenging hurdle in cancer chemotherapy. Here, inspired by the unique features of bacterial pathogens, an original biodegradable polymer micellar system with a rod‐like shape similar to the morphology of bacterial pathogens is developed. These novel nanocarriers have excellent features such as a great capacity of overcoming the rapid clearance of reticuloendothelial system (RES) with long blood circulation, high cellular internalization, and enhanced therapeutic efficacy against cancers. In vivo pharmacokinetic studies in mice reveal that the rod‐like micelles of ≈40 nm in diameter and 600 nm in length possess a minimal uptake by the RES and excellent blood circulation half‐lives (t1/2β = 24.23 ± 2.87 h) for carrying doxorubicin in contrast to spheres (t1/2β = 8.39 ± 0.53 h). The antitumor activity of the rod‐shaped micelles in Balb/c mice bearing H22 tumor xenograft models reveals that they are promptly internalized by tumor cells, resulting in their superior potency and efficacy against artificial solid tumors. These findings suggest that the bio‐inspired nanocarriers as an emerging drug delivery platform may have considerable benefits for enhancing the delivery efficiency of anticancer drugs and in turn enhancing cancer therapy in future clinical applications.  相似文献   

15.
Although pH and reduction responses are widely applied on gene and drug delivery system, the undefined molecule and disconnected response to corresponding transfection barriers still hamper their further application. Here, a multistage‐responsive lipopeptides polycation‐DNA nanoparticles (namely KR‐DC) as gene vector is designed, consisting of three functional modules. It provides the following outstanding “smart” characteristics: i) facile manufacture and ease to adjust ingredients for different conditions, ii) negatively charged surface to remain stable and increase biocompatibility in physiological environment, iii) pH‐triggered cascading charge‐conversion corresponding to tumor extracellular pH and endo/lysosomal pH, iv) the first stage of charge reversal for uptake enhancement at tumor site, v) the second stage of charge conversion for rapid endosomal escape, vi) the third stage of redox degradation aiming at DNA controlled release and nuclear entry, vii) cell‐penetrating peptides mimicking arginine‐rich periphery targeting to membrane penetration capacity improvement, and viii) lipid forming hydrophobic cavity for potential fat‐soluble drug encapsulation. Finally, KR‐DC nanoparticles achieve significantly enhanced in vitro transfection efficiency by almost four orders of magnitude in manual tumor environment with reduced side effects and satisfying gene expression in Hela xenograft tumor model in vivo.  相似文献   

16.
Traditional photodynamic phototherapy is not efficient for anticancer treatment because solid tumors have a hypoxic microenvironment. The development of photoactivated chemotherapy based on photoresponsive polymers that can be activated by light in the “therapeutic window” would enable new approaches for basic research and allow for anticancer phototherapy in hypoxic conditions. This work synthesizes a novel Ru‐containing block copolymer for photoactivated chemotherapy in hypoxic tumor environment. The polymer has a hydrophilic poly(ethylene glycol) block and a hydrophobic Ru‐containing block, which contains red‐light‐cleavable (650–680 nm) drug–Ru complex conjugates. The block copolymer self‐assembles into micelles, which can be efficiently taken up by cancer cells. Red light induces release of the drug–Ru complex conjugates from the micelles and this process is oxygen independent. The released conjugates inhibit tumor cell growth even in hypoxic tumor environment. Furthermore, the Ru‐containing polymer for photoactivated chemotherapy in a tumor‐bearing mouse model is applied. Photoactivated chemotherapy of the polymer micelles demonstrates efficient tumor growth inhibition. In addition, the polymer micelles do not cause any toxic side effects to mice during the treatment, demonstrating good biocompatibility of the system to the blood and healthy tissues. The novel red‐light‐responsive Ru‐containing polymer provides a new platform for phototherapy against hypoxic tumors.  相似文献   

17.
The development of advanced gene/drug codelivery carriers with stimuli‐responsive release manner for complementary cancer therapy is desirable. In this study, novel disulfide‐bridged and doxorubicin (DOX)‐embedded degradable silica nanoparticles (DS‐DOX) with unique self‐destruction features are synthesized by a facile one‐pot method. In order to realize codelivery of genes and drugs, the surface of DS‐DOX nanoparticles is readily functionalized with the assembled polycation (CD‐PGEA), comprising one β‐cyclodextrin core and two ethanolamine‐functionalized poly(glycidyl methacrylate) arms, to achieve DS‐DOX‐PGEA. The redox‐responsive self‐destruction behavior of DS‐DOX imparts DS‐DOX‐PGEA with a better ability to release anticancer drug DOX, while the low‐toxic hydroxyl‐rich CD‐PGEA brushes can efficiently deliver genes for cancer treatment. Very interestingly, the degradation process of DS‐DOX starts from the outside, while the destruction of the degradable silica (DS) nanoparticles without DOX begins from the center of the nanoparticles. The embedded DOX inside the DS‐DOX nanoparticles can significantly influence the structures and facilitate the cellular uptake and the subsequent gene transfection. The as‐developed DS‐DOX‐PGEA nanostructure with coordinating biodegradability, stimuli‐responsiveness, and controlled release manner might be desirable gene/drug codelivery carriers for clinical cancer treatment.  相似文献   

18.
Here, a new type of structure‐invertible, redox‐responsive polymeric nanoparticle for the efficient co‐delivery of nucleic acids and hydrophobic drugs in vitro and in vivo is reported for the first time, to combat the major challenges facing combination cancer therapy. The co‐delivery vector, which is prepared by conjugating branched poly(ethylene glycol) with dendrimers of two generations (G2) through disulfide linkages, is able to complex nucleic acids and load hydrophobic drugs with high loading capacity through structure inversion. The cleavage of disulfide linkages at intracellular glutathione‐rich reduction environment significantly decreases the cytotoxicity, and promotes more efficient drug release and gene transfection in vitro and in vivo. The co‐delivery carrier also displays enhanced endosomal escape capability and improved serum stability in vitro as compared with G2, and exhibits prolonged residence time and stronger transfection activity in vivo. Most importantly, co‐delivery of doxorubicin (DOX) and B‐cell lymphoma 2 (Bcl‐2) small interfering RNA (siRNA) exerts a combinational effect against tumor growth in murine tumor models in vivo, which is much more effective than either DOX or Bcl‐2 siRNA‐based monotherapy. The structure‐invertible nanoparticles may constitute a promising stimuli‐responsive system for the efficacious co‐delivery of multiple cargoes in future clinical applications of combination cancer therapies.  相似文献   

19.
The cell membrane is the most important protective barrier in living cells and cell membrane targeted therapy may be a high‐performance therapeutic modality for tumor treatment. Here, a novel charge reversible self‐delivery chimeric peptide C16–PRP–DMA is developed for long‐term cell membrane targeted photodynamic therapy (PDT). The self‐assembled C16–PRP–DMA nanoparticles can effectively target to tumor by enhanced permeability and retention effect without additional carriers. After undergoing charge reverse in acidic tumor microenvironment, C16–PRP–DMA inserts into the tumor cell membrane with a long retention time of more than 14 h, which is very helpful for in vivo applications. It is found that under light irradiation, the reactive oxygen species generated by the inserted C16–PRP–DMA would directly disrupt cell membrane and rapidly induce cell necrosis, which remarkably increases the PDT effect in vitro and in vivo. This novel self‐delivery chimeric peptide with a long‐term cell membrane targeting property provides a new prospect for effective PDT of cancer.  相似文献   

20.
A novel drug‐formulation protocol is developed to solve the delivery problem of hydrophobic drug molecules by using inorganic mesoporous silica nanocapsules (IMNCs) as an alternative to traditional organic emulsions and liposomes while preserving the advantages of inorganic materials. The unique structures of IMNCs are engineered by a novel fluoride‐silica chemistry based on a structural difference‐based selective etching strategy. The prepared IMNCs combine the functions of organic nanoemulsions or nanoliposomes with the properties of inorganic materials. Various spherical nanostructures can be fabricated simply by varying the synthetic parameters. The drug loading amount of a typical highly hydrophobic anticancer drug‐camptothecin (CPT) in IMNCs reaches as high as 35.1 wt%. The intracellular release of CPT from carriers is demonstrated in situ. In addition, IMNCs can play the role of organic nanoliposome (multivesicular liposome) in co‐encapsulating and co‐delivering hydrophobic (CPT) and hydrophilic (doxorubicin, DOX) anticancer drugs simultaneously. The co‐delivery of multi‐drugs in the same carrier and the intracellular release of the drug combinations enables a drug delivery system with efficient enhanced chemotherapeutic effect for DOX‐resistant MCF‐7/ADR cancer cells. The special IMNCs‐based “inorganic nanoemulsion”, as a proof‐of‐concept, can also be employed successfully to encapsulate and deliver biocompatible hydrophobic perfluorohexane (PFH) molecules for high intensity focused ultrasound (HIFU) synergistic therapy ex vivo and in vivo. Based on this novel design strategy, a wide range of inorganic material systems with similar “inorganic nanoemulsion or nanoliposome” functions will be developed to satisfy varied clinical requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号