首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fabrication of organic field‐effect transistors (OFETs) using a high‐throughput printing process has garnered tremendous interest for realizing low‐cost and large‐area flexible electronic devices. Printing of organic semiconductors for active layer of transistor is one of the most critical steps for achieving this goal. The charge carrier transport behavior in this layer, dictated by the crystalline microstructure and molecular orientations of the organic semiconductor, determines the transistor performance. Here, it is demonstrated that an inkjet‐printed single‐droplet of a semiconducting/insulating polymer blend holds substantial promise as a means for implementing direct‐write fabrication of organic transistors. Control of the solubility of the semiconducting component in a blend solution can yield an inkjet‐printed single‐droplet blend film characterized by a semiconductor nanowire network embedded in an insulating polymer matrix. The inkjet‐printed blend films having this unique structure provide effective pathways for charge carrier transport through semiconductor nanowires, as well as significantly improve the on‐off current ratio and the environmental stability of the printed transistors.  相似文献   

2.
For the solution processing of organic photovoltaics on an industrial scale, the exclusion of halogenated solvents is a necessity. However, the limited solubility of most semiconducting polymer/fullerene blends in non-halogenated solvents results in ink formulations with low viscosities which poses limitations to the use of roll-to-roll compatible deposition processes, such as inkjet printing. We propose to add polystyrene as a rheological modifier to increase the viscosity of bulk heterojunction (BHJ) non-halogenated inks. The printing and performance of P3HT/PCBM photoactive layer inks are characterized as a function of polystyrene concentration and three different molecular weights. Addition of 1 wt% polystyrene provided a near two-fold gain in viscosity, with the largest viscosity gains coming from the polymer with the highest molecular weight. However, this coincided with greater viscoelastic behavior, which reduced the jetting performance of the inks. Differences in solvent compatibility of the polystyrene/P3HT/PCBM ternary blend resulted in phase separation upon layer drying, whereby polystyrene segregated to the layer-air interface to form an isolated domain or network like topology. Nevertheless, a 1.7-fold increase in dynamic viscosity was obtained for devices with printed BHJ layers containing polystyrene at the expense of a 20% reduction in OPV performance. The improved viscosity and good printing behavior achieved with small additions of polystyrene demonstrates its potential to overcome the limited viscosity resulting from typical non-halogenated ink formulations for semiconducting polymers. These results offer a step forward to the industrialization of inkjet printing as an effective deposition technique for functional layers of organic electronics.  相似文献   

3.
The high‐precision deposition of highly crystalline organic semiconductors by inkjet printing is important for the production of printed organic transistors. Herein, a facile nonconventional lithographic patterning technique is developed for fabricating banks with microwell structures by inkjet printing solvent droplets onto a polymer layer, thereby locally dissolving the polymer to form microwells. The semiconductor ink is then inkjet‐printed into the microwells. In addition to confining the inkjet‐printed organic semiconductor droplets, the microwells provide a platform onto which organic semiconductor molecules crystallize during solvent evaporation. When printed onto the hydrophilic microwells, the inkjet‐printed 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS_PEN) molecules undergo self‐organization to form highly ordered crystalline structures as a result of contact line pinning at the top corner of the bank and the outward hydrodynamic flow within the drying droplet. By contrast, small crystallites form with relatively poor molecular ordering in the hydrophobic microwells as a result of depinning of the contact line along the walls of the microwells. Because pinning in the hydrophilic microwells occurred at the top corner of the bank, treating the surfaces of the dielectric layer with a hydrophobic organic layer does not disturb the formation of the highly ordered TIPS_PEN crystals. Transistors fabricated on the hydrophilic microwells and the hydrophobic dielectric layer exhibit the best electrical properties, which is explained by the solvent evaporation and crystallization characteristics of the organic semiconductor droplets in the microwell. These results indicate that this technique is suitable for patterning organic semiconductor deposits on large‐area flexible substrates for the direct‐write fabrication of high‐performance organic transistors.  相似文献   

4.
A comprehensive structure and performance study of thin blend films of the small‐molecule semiconductor, 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene (diF‐TESADT), with various insulating binder polymers in organic thin‐film transistors is reported. The vertically segregated composition profile and nanostructure in the blend films are characterized by a combination of complementary experimental methods including grazing incidence X‐ray diffraction, neutron reflectivity, variable angle spectroscopic ellipsometry, and near edge X‐ray absorption fine structure spectroscopy. Three polymer binders are considered: atactic poly(α‐methylstyrene), atactic poly(methylmethacrylate), and syndiotactic polystyrene. The choice of polymer can strongly affect the vertical composition profile and the extent of crystalline order in blend films due to the competing effects of confinement entropy, interaction energy with substrate surfaces, and solidification kinetics. The variations in the vertically segregated composition profile and crystalline order in thin blend films explain the significant impacts of binder polymer choice on the charge carrier mobility of these films in the solution‐processed bottom‐gate/bottom‐contact thin‐film transistors.  相似文献   

5.
Liquid‐phase exfoliation of layered solids holds promise for the scalable production of 2D nanosheets. When combined with suitable solvents and stabilizing polymers, the rheology of the resulting nanosheet dispersions can be tuned for a variety of additive manufacturing methods. While significant progress is made in the development of electrically conductive nanosheet inks, minimal effort is applied to ion‐conductive nanosheet inks despite their central role in energy storage applications. Here, the formulation of viscosity‐tunable hexagonal boron nitride (hBN) inks compatible with a wide range of printing methods that span the spectrum from low‐viscosity inkjet printing to high‐viscosity blade coating is demonstrated. The inks are prepared by liquid‐phase exfoliation with ethyl cellulose as the polymer dispersant and stabilizer. Thermal annealing of the printed structures volatilizes the polymer, resulting in a porous microstructure and the formation of a nanoscale carbonaceous coating on the hBN nanosheets, which promotes high wettability to battery electrolytes. The final result is a printed hBN nanosheet film that possesses high ionic conductivity, chemical and thermal stability, and electrically insulating character, which are ideal characteristics for printable battery components such as separators. Indeed, lithium‐ion battery cells based on printed hBN separators reveal enhanced electrochemical performance that exceeds commercial polymer separators.  相似文献   

6.
Charge carrier transport in organic electronic devices is influenced by the crystalline microstructure and morphology of the organic semiconductor film. Evaporation behavior during drying plays a vital role in controlling the film morphology and the distribution of solute in inkjet‐printed films. On p. 229, Kilwon Cho and co‐workers demonstrate the influence of the evaporation‐induced flow in a single droplet on the crystalline microstructure and film morphology of inkjet‐printed 6,13‐bis((triisopropylsilylethynyl) pentacene. The results provide an excellent method for direct‐write fabrication of high‐performance organic electronics. We have demonstrated the influence of evaporation‐induced flow in a single droplet on the crystalline microstructure and film morphology of an ink‐jet‐printed organic semiconductor, 6,13‐bis((triisopropylsilylethynyl) pentacene (TIPS_PEN), by varying the composition of the solvent mixture. The ringlike deposits induced by outward convective flow in the droplets have a randomly oriented crystalline structure. The addition of dichlorobenzene as an evaporation control agent results in a homogeneous film morphology due to slow evaporation, but the molecular orientation of the film is undesirable in that it is similar to that of the ring‐deposited films. However, self‐aligned TIPS_PEN crystals with highly ordered crystalline structures were successfully produced when dodecane was added. Dodecane has a high boiling point and a low surface tension, and its addition to the solvent results in a recirculation flow in the droplets that is induced by a Marangoni flow (surface‐tension‐driven flow), which arises during the drying processes in the direction opposite to the convective flow. The field‐effect transistors fabricated with these self‐aligned crystals via ink‐jet printing exhibit significantly improved performance with an average effective field‐effect mobility of 0.12 cm2 V–1 s–1. These results demonstrate that with the choice of appropriate solvent ink‐jet printing is an excellent method for the production of organic semiconductor films with uniform morphology and desired molecular orientation for the direct‐write fabrication of high‐performance organic electronics.  相似文献   

7.
A new thin‐film coating process, scanning corona‐discharge coating (SCDC), to fabricate ultrathin tri‐isopropylsilylethynyl pentacene (TIPS‐PEN)/amorphous‐polymer blend layers suitable for high‐performance, bottom‐gate, organic thin‐film transistors (OTFTs) is described. The method is based on utilizing the electrodynamic flow of gas molecules that are corona‐discharged at a sharp metallic tip under a high voltage and subsequently directed towards a bottom electrode. With the static movement of the bottom electrode, on which a blend solution of TIPS‐PEN and an amorphous polymer is deposited, SCDC provides an efficient route to produce uniform blend films with thicknesses of less than one hundred nanometers, in which the TIPS‐PEN and the amorphous polymer are vertically phase‐separated into a bilayered structure with a single‐crystalline nature of the TIPS‐PEN. A bottom‐gate field‐effect transistor with a blend layer of TIPS‐PEN/polystyrene (PS) (90/10 wt%) operated at ambient conditions, for example, indeed exhibits a highly reliable device performance with a field‐effect mobility of approximately 0.23 cm2 V?1 s?1: two orders of magnitude greater than that of a spin‐coated blend film. SCDC also turns out to be applicable to other amorphous polymers, such as poly(α‐methyl styrene) and poly(methyl methacrylate) and, readily combined with the conventional transfer‐printing technique, gives rise to micropatterned arrays of TIPS‐PEN/polymer films.  相似文献   

8.
Here, a highly crystalline and self‐assembled 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐Pentacene) thin films formed by simple spin‐coating for the fabrication of high‐performance solution‐processed organic field‐effect transistors (OFETs) are reported. Rather than using semiconducting organic small‐molecule–insulating polymer blends for an active layer of an organic transistor, TIPS‐Pentacene organic semiconductor is separately self‐assembled on partially crosslinked poly‐4‐vinylphenol:poly(melamine‐co‐formaldehyde) (PVP:PMF) gate dielectric, which results in a vertically segregated semiconductor‐dielectric film with millimeter‐sized spherulite‐crystalline morphology of TIPS‐Pentacene. The structural and electrical properties of TIPS‐Pentacene/PVP:PMF films have been studied using a combination of polarized optical microscopy, atomic force microscopy, 2D‐grazing incidence wide‐angle X‐ray scattering, and secondary ion mass spectrometry. It is finally demonstrated a high‐performance OFETs with a maximum hole mobility of 3.40 cm2 V?1 s?1 which is, to the best of our knowledge, one of the highest mobility values for TIPS‐Pentacene OFETs fabricated using a conventional solution process. It is expected that this new deposition method would be applicable to other small molecular semiconductor–curable polymer gate dielectric systems for high‐performance organic electronic applications.  相似文献   

9.
An inkjet printing process for depositing palladium (Pd) thin films from a highly loaded ink (>14 wt%) is reported. The viscosity and surface tension of a Pd‐organic precursor solution is adjusted using toluene to form a printable and stable ink. A two‐step thermolysis process is developed to convert the printed ink to continuous and uniform Pd films with good adhesion to different substrates. Using only one printing pass, a low electrical resistivity of 2.6 μΩ m of the Pd film is obtained. To demonstrate the electrochemical pH sensing application, the surfaces of the printed Pd films are oxidized for ion‐to‐electron transduction and the underlying layer is left for electron conduction. Then, solid‐state reference electrodes are integrated beside the bifunctional Pd electrodes by inkjet printing. These potentiometric sensors have sensitivities of 60.6 ± 0.1 and 57 ± 0.6 mV pH?1 on glass and polyimide substrates, and short response times of 11 and 6 s, respectively. Also, accurate pH values of real water samples are obtained by using the printed sensors with a low‐cost multimeter. These results indicate that the facile and cost‐effective inkjet printing and integration techniques may be applied in fabricating future electrochemical monitoring systems for environmental parameters and human health conditions.  相似文献   

10.
High‐performance top‐gated organic field‐effect transistor (OFET) memory devices using electrets and their applications to flexible printed organic NAND flash are reported. The OFETs based on an inkjet‐printed p‐type polymer semiconductor with efficiently chargeable dielectric poly(2‐vinylnaphthalene) (PVN) and high‐k blocking gate dielectric poly(vinylidenefluoride‐trifluoroethylene) (P(VDF‐TrFE)) shows excellent non‐volatile memory characteristics. The superior memory characteristics originate mainly from reversible charge trapping and detrapping in the PVN electret layer efficiently in low‐k/high‐k bilayered dielectrics. A strategy is devised for the successful development of monolithically inkjet‐printed flexible organic NAND flash memory through the proper selection of the polymer electrets (PVN or PS), where PVN/‐ and PS/P(VDF‐TrFE) devices are used as non‐volatile memory cells and ground‐ and bit‐line select transistors, respectively. Electrical simulations reveal that the flexible printed organic NAND flash can be possible to program, read, and erase all memory cells in the memory array repeatedly without affecting the non‐selected memory cells.  相似文献   

11.
Solution‐processable functionalized acenes have received special attention as promising organic semiconductors in recent years because of their superior intermolecular interactions and solution‐processability, and provide useful benchmarks for organic field‐effect transistors (OFETs). Charge‐carrier transport in organic semiconductor thin films is governed by their morphologies and molecular orientation, so self‐assembly of these functionalized acenes during solution processing is an important challenge. This article discusses the charge‐carrier transport characteristics of solution‐processed functionalized acene transistors and, in particular, focuses on the fine control of the films' morphologies and structural evolution during film‐deposition processes such as inkjet printing and post‐deposition annealing. We discuss strategies for controlling morphologies and crystalline microstructure of soluble acenes with a view to fabricating high‐performance OFETs.  相似文献   

12.
Graphene‐based organic nanocomposites have ascended as promising candidates for thermoelectric energy conversion. In order to adopt existing scalable printing methods for developing thermostable graphene‐based thermoelectric devices, optimization of both the material ink and the thermoelectric properties of the resulting films are required. Here, inkjet‐printed large‐area flexible graphene thin films with outstanding thermoelectric properties are reported. The thermal and electronic transport properties of the films reveal the so‐called phonon‐glass electron‐crystal character (i.e., electrical transport behavior akin to that of few‐layer graphene flakes with quenched thermal transport arising from the disordered nanoporous structure). As a result, the all‐graphene films show a room‐temperature thermoelectric power factor of 18.7 µW m?1 K?2, representing over a threefold improvement to previous solution‐processed all‐graphene structures. The demonstration of inkjet‐printed thermoelectric devices underscores the potential for future flexible, scalable, and low‐cost thermoelectric applications, such as harvesting energy from body heat in wearable applications.  相似文献   

13.
Printing semiconductor devices under ambient atmospheric conditions is a promising method for the large‐area, low‐cost fabrication of flexible electronic products. However, processes conducted at temperatures greater than 150 °C are typically used for printed electronics, which prevents the use of common flexible substrates because of the distortion caused by heat. The present report describes a method for the room‐temperature printing of electronics, which allows thin‐film electronic devices to be printed at room temperature without the application of heat. The development of π‐junction gold nanoparticles as the electrode material permits the room‐temperature deposition of a conductive metal layer. Room‐temperature patterning methods are also developed for the Au ink electrodes and an active organic semiconductor layer, which enables the fabrication of organic thin‐film transistors through room‐temperature printing. The transistor devices printed at room temperature exhibit average field‐effect mobilities of 7.9 and 2.5 cm2 V?1 s?1 on plastic and paper substrates, respectively. These results suggest that this fabrication method is very promising as a core technology for low‐cost and high‐performance printed electronics.  相似文献   

14.
Printing organic semiconductor inks by means of roll‐to‐roll compatible techniques will allow a continuous, high‐volume fabrication of large‐area flexible optoelectronic devices. The gravure printing technique is set to become a widespread process for the high throughput fabrication of functional layers. The gravure printing process of a poly‐phenylvinylene derivative light‐emitting polymer dissolved in a two solvent mixture on poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is studied. The surface tensions, contact angles, viscosities, and drying times of the formulations are investigated as a function of the solvent volume fraction and polymer concentration. The properties of the ink grant a homogeneous printed layer, suitable for device fabrication, when the calculated film leveling time is shorter than a critical time, at which the film has been frozen due to loss of solvent via evaporation. The knowledge obtained from the printing process is applied to fabricate organic light‐emitting diodes (OLEDs) on flexible substrates, yielding a luminance of ≈5000 cd m?2.  相似文献   

15.
A graphite thin film was investigated as the drain and source electrodes for bottom‐contact organic field‐effect transistors (BC OFETs). Highly conducting electrodes (102 S cm?1) at room temperature were obtained from pyrolyzed poly(l,3,4‐oxadiazole) (PPOD) thin films that were prepatterned with a low‐cost inkjet printing method. Compared to the devices with traditional Au electrodes, the BC OFETs showed rather high performances when using these source/drain electrodes without any further modification. Being based on a graphite‐like material these electrodes possess excellent compatibility and proper energy matching with both p‐ and n‐type organic semiconductors, which results in an improved electrode/organic‐layer contact and homogeneous morphology of the organic semiconductors in the conducting channel, and finally a significant reduction of the contact resistance and enhancement of the charge‐carrier mobility of the devices is displayed. This work demonstrates that with the advantages of low‐cost, high‐performance, and printability, PPOD could serve as an excellent electrode material for BC OFETs.  相似文献   

16.
The fabrication of a thin‐film transistor backplane and a liquid‐crystal display using printing processes can eliminate the need for photolithography and offers the potential to reduce the manufacturing costs. In this study, we prepare contact via structures through a poly(methyl methacrylate) polymer insulator layer using inkjet printing. When droplets of silver ink composed of a polymer solvent are placed onto the polymer insulator and annealed at high temperatures, the silver ink penetrates the interior of the polymer and generates conducting paths between the top and bottom metal lines through the partial dissolution and swelling of the polymer. The electrical property of various contact via‐hole interconnections is investigated using a semiconductor characterization system.  相似文献   

17.
Flexible and transparent textile‐based conductors are developed by inkjet printing poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) onto polyethylene terephthalate (PET) mesh fabrics. The conductivity–transparency relationship is determined for textile‐based conductors with different thicknesses of the printed PEDOT:PSS film. The function of these textile‐based conductors is studied in the alternating current powder electroluminescent (ACPEL) devices and compared with indium tin oxide (ITO) glass in an ACPEL device of the same configuration. Textiles coated with conducting polymers are a potential alternative to coated polymer films for flexible, transparent conductors.  相似文献   

18.
While molecular ordering via crystallization is responsible for many of the impressive optoelectronic properties of thin‐film semiconducting polymer devices, crystalline morphology and its crucial influence on performance remains poorly controlled and is usually studied as a passive result of the conditions imposed by film deposition parameters. A method for systematic control over crystalline morphology in conjugated polymer thin films by very precise control of nucleation density and crystal growth conditions is presented. A precast poly(3‐hexylthiophene) film is first swollen into a solution‐like state in well‐defined vapor pressures of a good solvent, while the physical state of the polymer chains is monitored using in situ UV–vis spectroscopy and ellipsometry. Nucleation density is selected by a controlled deswelling of the film or by a self‐seeding approach using undissolved crystalline aggregates that remain in the swollen film. Nucleation densities ranging successively over many orders of magnitude are achieved, extending into the regime of spherulitic domains 10 to 100 μm in diameter, a length scale highly relevant for typical probes of macroscopic charge transport such as field‐effect transistors. This method is presented as a tool for future systematic study of the structure‐function relation in semicrystalline semiconducting polymers in a broad range of applications.  相似文献   

19.
We have demonstrated the influence of evaporation‐induced flow in a single droplet on the crystalline microstructure and film morphology of an ink‐jet‐printed organic semiconductor, 6,13‐bis((triisopropylsilylethynyl) pentacene (TIPS_PEN), by varying the composition of the solvent mixture. The ringlike deposits induced by outward convective flow in the droplets have a randomly oriented crystalline structure. The addition of dichlorobenzene as an evaporation control agent results in a homogeneous film morphology due to slow evaporation, but the molecular orientation of the film is undesirable in that it is similar to that of the ring‐deposited films. However, self‐aligned TIPS_PEN crystals with highly ordered crystalline structures were successfully produced when dodecane was added. Dodecane has a high boiling point and a low surface tension, and its addition to the solvent results in a recirculation flow in the droplets that is induced by a Marangoni flow (surface‐tension‐driven flow), which arises during the drying processes in the direction opposite to the convective flow. The field‐effect transistors fabricated with these self‐aligned crystals via ink‐jet printing exhibit significantly improved performance with an average effective field‐effect mobility of 0.12 cm2 V–1 s–1. These results demonstrate that with the choice of appropriate solvent ink‐jet printing is an excellent method for the production of organic semiconductor films with uniform morphology and desired molecular orientation for the direct‐write fabrication of high‐performance organic electronics.  相似文献   

20.
We investigated the effects of a gate dielectric and its solvent on the characteristics of top‐gated organic field‐effect transistors (OFETs). Despite the rough top surface of the inkjet‐printed active features, the charge transport in an OFET is still favorable, with no significant degradation in performance. Moreover, the characteristics of the OFETs showed a strong dependency on the gate dielectrics used and its orthogonal solvents. Poly(3‐hexylthiophene) OFETs with a poly(methyl methacrylate) dielectric showed typical p‐type OFET characteristics. The selection of gate dielectric and solvent is very important to achieve high‐performance organic electronic circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号