首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, perovskite solar cells (PSC) with high power‐conversion efficiency (PCE) and long‐term stability have been achieved by employing 2D perovskite layers on 3D perovskite light absorbers. However, in‐depth studies on the material and the interface between the two perovskite layers are still required to understand the role of the 2D perovskite in PSCs. Self‐crystallization of 2D perovskite is successfully induced by deposition of benzyl ammonium iodide (BnAI) on top of a 3D perovskite light absorber. The self‐crystallized 2D perovskite can perform a multifunctional role in facilitating hole transfer, owing to its random crystalline orientation and passivating traps in the 3D perovskite. The use of the multifunctional 2D perovskite (M2P) leads to improvement in PCE and long‐term stability of PSCs both with and without organic hole transporting material (HTM), 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenyl‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) compared to the devices without the M2P.  相似文献   

2.
Carbon electrode are a low‐cost and great potential strategy for stable perovskite solar cells (PSCs). However, the efficiency of carbon‐based PSCs lags far behind compared with that of state‐of‐the‐art PSCs. The poor interface contact between the carbon electrode and the underlying layer dominates the performance loss of the reported carbon‐based PSCs. In this respect, a sort of self‐adhesive macroporous carbon film is developed as counter electrode by a room‐temperature solvent‐exchange method. Via a simple press transfer technique, the carbon film can form excellent interface contact with the underlying hole transporting layer, remarkably beneficial to interface charge transfer. A power conversion efficiency of up to 19.2% is obtained for mesoporous‐structure PSCs, which is the best achieved for carbon‐based PSCs. Moreover, the device exhibits greatly improved long‐term stability. It retains over 95% of the initial efficiency after 1000 h storage under ambient atmosphere. Furthermore, after aging for 80 h under illumination and maximum power point in nitrogen atmosphere, the carbon‐based PSC retains over 94% of its initial performance.  相似文献   

3.
Endured, low‐cost, and high‐performance flexible perovskite solar cells (PSCs) featuring lightweight and mechanical flexibility have attracted tremendous attention for portable power source applications. However, flexible PSCs typically use expensive and fragile indium–tin oxide as transparent anode and high‐vacuum processed noble metal as cathode, resulting in dramatic performance degradation after continuous bending or thermal stress. Here, all‐carbon‐electrode‐based flexible PSCs are fabricated employing graphene as transparent anode and carbon nanotubes as cathode. All‐carbon‐electrode‐based flexible devices with and without spiro‐OMeTAD (2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene) hole conductor achieve power conversion efficiencies (PCEs) of 11.9% and 8.4%, respectively. The flexible carbon‐electrode‐based solar cells demonstrate superior robustness against mechanical deformation in comparison with their counterparts fabricated on flexible indium–tin oxide substrates. Moreover, all carbon‐electrode‐based flexible PSCs also show significantly enhanced stability compared to the flexible devices with gold and silver cathodes under continuous light soaking or 60 °C thermal stress in air, retaining over 90% of their original PCEs after 1000 h. The promising durability and stability highlight that flexible PSCs are fully compatible with carbon materials and pave the way toward the realization of rollable and low‐cost flexible perovskite photovoltaic devices.  相似文献   

4.
Efficient organic–inorganic metal halide perovskite absorbers have gained tremendous research interest in the past decade due to their super optoelectronic properties and defect tolerance. Lead (Pb) halide perovskites enable highly efficient perovskite solar cells (PSCs) with a record power conversion efficiency (PCE) of over 23%. However, the energy bandgaps of Pb halide perovskites are larger than the optimal bandgap for single junction solar cells, governed by the Shockley–Queisser (SQ) radiative limit. Mixed tin (Sn)‐Pb halide perovskites have drawn significant attention, since their bandgap can be tuned to below 1.2 eV, which opens a door for fabricating all‐perovskite tandem solar cells that can break the SQ radiative limit. This review summarizes the development of low‐bandgap mixed Sn‐Pb PSCs and their applications in all‐perovskite tandem solar cells. Its aim is to facilitate the development of new approaches to achieve high efficiency low‐bandgap single‐junction mixed Sn‐Pb PSCs and all‐perovskite tandem solar cells.  相似文献   

5.
To develop high‐capacitance flexible solid‐state supercapacitors and explore its application in self‐powered electronics is one of ongoing research topics. In this study, self‐stacked solvated graphene (SSG) films are reported that have been prepared by a facile vacuum filtration method as the free‐standing electrode for flexible solid‐state supercapacitors. The highly hydrated SSG films have low mass loading, high flexibility, and high electrical conductivity. The flexible solid‐state supercapacitors based on SSG films exhibit excellent capacitive characteristics with a high gravimetric specific capacitance of 245 F g?1 and good cycling stability of 10 000 cycles. Furthermore, the flexible solid‐state supercapacitors are integrated with high performance perovskite hybrid solar cells (pero‐HSCs) to build self‐powered electronics. It is found that the solid‐state supercapacitors can be charged by pero‐HSCs and discharged from 0.75 V. These results demonstrate that the self‐powered electronics by integration of the flexible solid‐state supercapacitors with pero‐HSCs have great potential applications in storage of solar energy and in flexible electronics, such as portable and wearable personal devices.  相似文献   

6.
7.
Organolead halide perovskite solar cells (PSC) are arising as promising candidates for next‐generation renewable energy conversion devices. Currently, inverted PSCs typically employ expensive organic semiconductor as electron transport material and thermally deposited metal as cathode (such as Ag, Au, or Al), which are incompatible with their large‐scale production. Moreover, the use of metal cathode also limits the long‐term device stability under normal operation conditions. Herein, a novel inverted PSC employs a SnO2‐coated carbon nanotube (SnO2@CSCNT) film as cathode in both rigid and flexible substrates (substrate/NiO‐perovskite/Al2O3‐perovskite/SnO2@CSCNT‐perovskite). Inverted PSCs with SnO2@CSCNT cathode exhibit considerable enhancement in photovoltaic performance in comparison with the devices without SnO2 coating owing to the significantly reduced charge recombination. As a result, a power conversion efficiency of 14.3% can be obtained on rigid substrates while the flexible ones achieve 10.5% efficiency. More importantly, SnO2@CSCNT‐based inverted PSCs exhibit significantly improved stability compared to the standard inverted devices made with silver cathode, retaining over 88% of their original efficiencies after 550 h of full light soaking or thermal stress. The results indicate that SnO2@CSCNT is a promising cathode material for long‐term device operation and pave the way toward realistic commercialization of flexible PSCs.  相似文献   

8.
3D organic–inorganic lead halide perovskites have shown great potential in efficient photovoltaic devices. However, the low stability of the 3D perovskite layer and random arrangement of the perovskite crystals hinder its commercialization road. Herein, a highly oriented 2D@3D ((AVA)2PbI4@MAPbI3) perovskite structure combining the advantages of both 2D and 3D perovskite is fabricated through an in situ route. The highest power conversion efficiency (PCE) of 18.0% is observed from a 2D@3D perovskite solar cell (PSC), and it also shows significantly enhanced device stability under both inert (90% of initial PCE for 32 d) and ambient conditions (72% of initial PCE for 20 d) without encapsulation. The high efficiency of 18.0% and nearly twofold improvement of device stability in ambient compared with pure 3D PSCs confirm that such 2D@3D perovskite structure is an effective strategy for high performance and increasing stability and thus will enable the timely commercialization of PSCs.  相似文献   

9.
Interfacial ligand passivation engineering has recently been recognized as a promising avenue, contributing simultaneously to the optoelectronic characteristics and moisture/operation tolerance of perovskite solar cells. To further achieve a win‐win situation of both performance and stability, an innovative conjugated aniline modifier (3‐phenyl‐2‐propen‐1‐amine; PPEA) is explored to moderately tailor organolead halide perovskites films. Here, the conjugated PPEA presents both “quasi‐coplanar” rigid geometrical configuration and distinct electron delocalization characteristics. After a moderate treatment, a stronger dipole capping layer can be formed at the perovskite/transporting interface to achieve favorable banding alignment, thus enlarging the built‐in potential and promoting charge extraction. Meanwhile, a conjugated cation coordinated to the surface of the perovskite grains/units can form preferably ordered overlapping, not only passivating the surface defects but also providing a fast path for charge exchange. Benefiting from this, a ≈21% efficiency of the PPEA‐modified solar cell can be obtained, accompanied by long‐term stability (maintaining 90.2% of initial power conversion efficiency after 1000 h testing, 25 °C, and 40 ± 10 humidity). This innovative conjugated molecule “bridge” can also perform on a larger scale, with a performance of 18.43% at an area of 1.96 cm2.  相似文献   

10.
With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate multifunctional molecule, 2,2-difluoropropanediamide (DFPDA), is selected to ameliorate all the instability issues. Specifically, the carbonyl groups in DFPDA form chemical bonds with Pb2+ and passivate under-coordinated Pb2+ defects. Consequently, the perovskite crystallization rate is reduced and high-quality films are produced with fewer defects. The amino groups not only bind with iodide to suppress ion migration but also increase the electron density on the carbonyl groups to further enhance their passivation effect. Furthermore, the fluorine groups in DFPDA form both an effective barrier on the perovskite to improve its moisture stability and a bridge between the perovskite and HTL for effective charge transport. In addition, they show an effective doping effect in the HTL to improve its carrier mobility. With the help of the combined effects of these groups in DFPDA, the PSCs with DFPDA additive achieve a champion efficiency of 22.21% and a substantially improved stability against moisture, heat, and light.  相似文献   

11.
Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high‐performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution‐processed polycrystalline perovskite films. Seeking facial and efficient methods to passivate the perovskite film for minimizing defect density is necessary for further improving the photovoltaic performance. Here, a convenient strategy is developed to improve perovskite crystallization by incorporating a 2D polymeric material of graphitic carbon nitride (g‐C3N4) into the perovskite layer. The addition of g‐C3N4 results in improved crystalline quality of perovskite film with large grain size by retarding the crystallization rate, and reduced intrinsic defect density by passivating charge recombination centers around the grain boundaries. In addition, g‐C3N4 doping increases the film conductivity of perovskite layer, which is beneficial for charge transport in perovskite light‐absorption layer. Consequently, a champion device with a maximum power conversion efficiency of 19.49% is approached owing to a remarkable improvement in fill factor from 0.65 to 0.74. This finding demonstrates a simple method to passivate the perovskite film by controlling the crystallization and reducing the defect density.  相似文献   

12.
A new approach to ubiquitous sensing for indoor applications is presented, using low‐cost indoor perovskite photovoltaic cells as external power sources for backscatter sensors. Wide‐bandgap perovskite photovoltaic cells for indoor light energy harvesting are presented with the 1.63 and 1.84 eV devices that demonstrate efficiencies of 21% and 18.5%, respectively, under indoor compact fluorescent lighting, with a champion open‐circuit voltage of 0.95 V in a 1.84 eV cell under a light intensity of 0.16 mW cm?2. Subsequently, a wireless temperature sensor self‐powered by a perovskite indoor light‐harvesting module is demonstrated. Three perovskite photovoltaic cells are connected in series to create a module that produces 14.5 µW output power under 0.16 mW cm?2 of compact fluorescent illumination with an efficiency of 13.2%. This module is used as an external power source for a battery‐assisted radio‐frequency identification temperature sensor and demonstrates a read range by of 5.1 m while maintaining very high frequency measurements every 1.24 s. The combined indoor perovskite photovoltaic modules and backscatter radio‐frequency sensors are further discussed as a route to ubiquitous sensing in buildings given their potential to be manufactured in an integrated manner at very low cost, their lack of a need for battery replacement, and the high frequency data collection possible.  相似文献   

13.
The recent rise of low‐dimensional Ruddlesden–Popper (RP) perovskites is notable for superior humidity stability, however they suffer from low power conversion efficiency (PCE). Suitable organic spacer cations with special properties display a critical effect on the performance and stability of perovskite solar cells (PSCs). Herein, a new strategy of designing self‐additive low‐dimensional RP perovskites is first proposed by employing a glycine salt (Gly+) with outstanding additive effect to improve the photovoltaic performance. Due to the strong interaction between C?O and Pb2+, the Gly+ can become a nucleation center and be beneficial to uniform and fast growth of the Gly‐based RP perovskites with larger grain sizes, leading to reduced grain boundary and increased carrier transport. As a result, the Gly‐based self‐additive low‐dimensional RP perovskites exhibit remarkable photoelectric properties, yielding the highest PCE of 18.06% for Gly (n = 8) devices and 15.61% for Gly (n = 4) devices with negligible hysteresis. Furthermore, the Gly‐based devices without encapsulation show excellent long‐term stability against humidity, heat, and UV light in comparison to BA‐based low‐dimensional PSCs. This approach provides a feasible design strategy of new‐type low‐dimensional RP perovskites to obtain highly efficient and stable devices for next‐generation photovoltaic applications.  相似文献   

14.
Developing highly effective and stable counter electrode (CE) materials to replace rare and expensive noble metals for dye‐sensitized and perovskite solar cells (DSC and PSC) is a research hotspot. Carbon materials are identified as the most qualified noble metal‐free CEs for the commercialization of the two photovoltaic devices due to their merits of low cost, excellent activity, and superior stability. Herein, carbonaceous CE materials are reviewed extensively with respect to the two devices. For DSC, a classified discussion according to the morphology is presented because electrode properties are closely related to the specific porosity or nanostructure of carbon materials. The pivotal factors influencing the catalytic behavior of carbon CEs are also discussed. For PSC, an overview of the new carbon CE materials is addressed comprehensively. Moreover, the modification techniques to improve the interfacial contact between the perovskite and carbon layers, aiming to enhance the photovoltaic performance, are also demonstrated. Finally, the development directions, main challenges, and coping approaches with respect to the carbon CE in DSC and PSC are stated.  相似文献   

15.
16.
The optoelectronic properties of perovskite films are closely related to the film quality, so depositing dense, uniform, and stable perovskite films is crucial for fabricating high‐performance perovskite solar cells (PSCs). CsPbI2Br perovskite, prized for its superb stability toward light soaking and thermal aging, has received a great deal of attention recently. However, the air instability and poor performance of CsPbI2Br PSCs are hindering its further progress. Here, an approach is reported for depositing high‐quality CsPbI2Br films via the Lewis base adducts PbI2(DMSO) and PbBr2(DMSO) as precursors to slow the crystallization of the perovskite film. This process produces CsPbI2Br films with large‐scale crystalline grains, flat surfaces, low defects, and long carrier lifetimes. More interestingly, PbI2(DMSO) and PbBr2(DMSO) adducts could significantly improve the stability of CsPbI2Br films in air. Using films prepared by this technique, a power conversion efficiency (PCE) of 14.78% is obtained in CsPbI2Br PSCs, which is the highest PCE value reported for CsPbI2Br‐based PSCs to date. In addition, the PSCs based on DMSO adducts show an extended operational lifetime in air. These excellent performances indicate that preparing high‐quality inorganic perovskite films by using DMSO adducts will be a potential method for improving the performance of other inorganic PSCs.  相似文献   

17.
18.
2D halide perovskites have recently been recognized as a promising avenue in perovskite solar cells (PSCs) in terms of encouraging stability and defect passivation effect. However, the efficiency (less than 15%) of ultrastable 2D Ruddlesden–Popper PSCs still lag far behind their traditional 3D perovskite counterparts. Here, a rationally designed 2D‐3D perovskite stacking‐layered architecture by in situ growing 2D PEA2PbI4 capping layers on top of 3D perovskite film, which drastically improves the stability of PSCs without compromising their high performance, is reported. Such a 2D perovskite capping layer induces larger Fermi‐level splitting in the 2D‐3D perovskite film under light illumination, resulting in an enhanced open‐circuit voltage (Voc) and thus a higher efficiency of 18.51% in the 2D‐3D PSCs. Time‐resolved photoluminescence decay measurements indicate the facilitated hole extraction in the 2D‐3D stacking‐layered perovskite films, which is ascribed to the optimized energy band alignment and reduced nonradiative recombination at the subgap states. Benefiting from the high moisture resistivity as well as suppressed ion migration of the 2D perovskite, the 2D‐3D PSCs show significantly improved long‐term stability, retaining nearly 90% of the initial power conversion efficiency after 1000 h exposure in the ambient conditions with a high relative humidity level of 60 ± 10%.  相似文献   

19.
Within the past few years, the record efficiency of inorganic–organic perovskite solar cell (PSC) has improved rapidly up to over 20%. However, the viability of commercialization of the PSC technology has been seriously questioned due to the moisture‐ and thermal‐induced instabilities. Here, it is demonstrated that these issues may be mitigated via cell structure design and contact engineering. By employing the hole‐conductor layer‐free cell structure and a bi‐layer back contact consisting of a carbon/CH3NH3I composite layer and a compact hydrophobic carbon layer, the PSCs have shown excellent stability, inhibiting moisture ingression and heat‐induced perovskite degradation. It is found that, the unique bi‐layer contact enables the optimization of perovskite absorbers during thermal stress. As a result, instead of degradation, the devices present enhanced performance under heating at 100 °C for 30 min. The best‐performing cell shows a final efficiency of 13.6% from an initial efficiency of 11.3% after thermal stress. Upon encapsulation, these cells can even retain 90% of the initial efficiencies after water exposure and over 100% initial efficiency under thermal stress at 150 °C for half an hour. This approach provides a facile way for stabilizing the PSCs and opens a door for viable commercialization of the emerging PSC technology.  相似文献   

20.
A key issue for perovskite solar cells is the stability of perovskite materials due to moisture effects under ambient conditions, although their efficiency is improved constantly. Herein, an improved CH3NH3PbI3?xClx perovskite quality is demonstrated with good crystallization and stability by using water as an additive during crystal perovskite growth. Incorporating suitable water additives in N,N‐dimethylformamide (DMF) leads to controllable growth of perovskites due to the lower boiling point and the higher vapor pressure of water compared with DMF. In addition, CH3NH3PbI3?xClx · nH2O hydrated perovskites, which can be resistant to the corrosion by water molecules to some extent, are assumed to be generated during the annealing process. Accordingly, water additive based perovskite solar cells present a high power conversion efficiency of 16.06% and improved cell stability under ambient conditions compared with the references. The findings in this work provide a route to control the growth of crystal perovskites and a clue to improve the stability of organic–inorganic halide perovskites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号