首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
滴流床反应器内脉冲流下动持液量实验   总被引:1,自引:1,他引:0       下载免费PDF全文
对气液强相互作用下滴流床反应器内的流体动力学进行了分析讨论 .实验测定了脉冲流流型下的床层平均动持液量 .考察了气液流率、液体黏度、填料材料等因素对动持液量的影响 .根据对滴流床反应器内流体流动机理的分析及实验结果 ,提出了关联脉冲流型式下动持液量的关联式 .该关联式能很好地关联实验数据 ,可用于预测温和型脉冲流下的动持液量  相似文献   

2.
The effects of temperature and pressure on the structure of the trickle-to-pulse flow regime transition in slow-mode cyclic operation in trickle-bed reactors were reported. The relationship between liquid holdup and liquid velocities at the trickle-to-pulse flow transition in cyclic operation, the shock wave behavior as a function of bed depth, as well as the pulsing flow regime properties were investigated for Newtonian (air-water) and non-Newtonian (air-0.25% carboxymethylcellulose (CMC)) liquids. At a given temperature, the breakthrough, plateau and decay times of the shock wave were found to decrease with bed depth. The pulse velocity and pulse frequency for pulsing flow regime both in cyclic operation and in natural pulsing (constant-throughput operation) were observed to increase with temperature. However, increasing the reactor pressure led to increased pulse frequency and decreased pulse velocity. Analysis of the transition liquid holdups for natural pulse flow and cyclic operation revealed that the liquid holdup decreased with temperature and pressure. The transition liquid holdups and superficial liquid pulse velocities in symmetric peak-base cyclic operation surpassed those in constant-throughput operation for given temperature, pressure and gas velocity, giving rise to wider trickle flow regime area in cyclic operation. The behavior of both Newtonian and power-law non-Newtonian fluids was similar regarding the effect of temperature, pressure and gas velocity.  相似文献   

3.
Gas/liquid down-flow in packed beds is studied, under periodic liquid feeding (at sufficiently high frequencies to be classified as “fast” mode of pulsing), in a range of mean liquid and gas flow rates within the steady “trickling flow regime”. The aim is to identify periodic feeding conditions resulting in improved fluid-mechanical characteristics (e.g. uniform fluids distribution) and possibly enhanced transport rates in this flow regime, which is common in industrial processes. From instantaneous, cross-sectionally averaged holdup measurements, at various locations along the packed bed, quantitative information is obtained on the axial propagation and attenuation of induced pulses. A phenomenological treatment of the pulse decay process facilitates data interpretation and leads to the determination of a characteristic attenuation factor for the various conditions tested. Key parameters of the process studied include, in addition to dynamic holdup, pressure drop, pulse celerity and intensity, as a function of fluid feed rates (G,L) and liquid cyclic frequency. Under the conditions of these tests, and for fixed mean rates G,L, the time averaged holdup and the pulse celerity are practically constant along the bed; furthermore, these quantities as well as the pressure drop do not seem to be affected by the imposed cyclic liquid feeding frequency. An expression to tentatively correlate pulse celerity data is recommended.The computed attenuation factors indicate that there is a rather narrow band of mean gas and liquid rates (along the so-called “pseudo-transition” boundary to pulsing flow) where pulse decay is at a minimum. Based on these results as well as on pulse intensity vs. bed length data, recommendations are made on preferred conditions for induced pulsing (from the fluid-mechanical standpoint) which would maximize expected benefits.  相似文献   

4.
Periodic liquid feeding of the ON-OFF type is investigated — at sufficiently high frequencies to be classified as “fast” mode of induced pulsing — in the range of mean gas and liquid flow rates corresponding to the steady “trickling flow” regime. Two of the most common types of catalyst-support particles, i.e. porous spherical and cylindrical extrudates, are employed to study the imposed pulse characteristics. Detailed information is obtained, on the axial propagation and attenuation of pulses, from instantaneous, cross-sectionally averaged holdup measurements. Key fluid-mechanical parameters studied include, aside from dynamic holdup and pressure drop, pulse celerity and intensity, as a function of fluid feed rates (G,L) and liquid cyclic frequency. Similar published data, for 6 mm glass spheres, are employed for comparison; it is shown that, for the particles examined, particle size has a pronounced effect, but not as significant as that of particle shape. For particles of comparable size, the cylindrical shape is associated with much greater global dynamic holdup and pressure drop, and with increased pulse attenuation. Moreover, packed extrudates exhibit a significant increase of holdup in the axial direction, recently also observed in steady trickling flow. For spherical particles, both time-average holdup and pulse celerity are practically constant along the bed for fixed L,G. Pressure drop, global holdup and pulse celerity are not affected by cyclic liquid feeding frequency, for both spherical and cylindrical extrudate particles. Based on the pulse attenuation characteristics, for the three particle types examined, recommendations are made on preferred conditions for induced pulsing (from the fluid dynamics point of view) which would maximize benefits. Overall, it appears that spherical packings hold significant advantages over cylindrical extrudates of comparable size. Finally, in view of the observed significant decay of imposed pulses along the bed, care should be exercised to properly interpret data obtained in short laboratory reactors (where pulse attenuation is limited) for scale-up of the much longer industrial beds.  相似文献   

5.
The present study has attempted to investigate pressure drop and holdup during simultaneous flow of two liquids through a vertical pipe. The liquids selected were kerosene and water. The measurements were made for phase velocities varying from 0.05–1.2 m/s for both liquids. The pressure drop was measured with a differential pressure transducer while the quick closing valve (QCV) technique was adopted for the measurement of liquid holdup. The measured holdup and pressure drop were analyzed with suitable theoretical models according to the existing flow patterns. The analysis reveals that the homogeneous model is suitable for dispersed bubbly flow whereas bubbly and churn‐turbulent flow pattern is better predicted by the drift flux model. On the other hand, the two fluid flow model accurately predicts the pressure drop in core annular flow.  相似文献   

6.
滴流床中气液流速较高时会产生脉冲流。脉冲特性可表示为:脉冲频率、脉冲速度、脉冲持液与脉冲间持液。这些参数可用气液流速、填料特性及气液物性来度量。在宏观物料衡算基础上推得脉冲速度的模型。脉冲持液就是反应器的动持液;脉冲持液与脉冲间持液之比近于1.5。发现脉冲频率完全受表观液速与临界液速的差值所控制。获得了三个关联式,涉及不同系统,也包含文献数据。  相似文献   

7.
Trickle beds of 1 meter in length and resp. 5, 10 and 20 cm in diameter were operated in the so-called pulsing flow regime. The packing was 2.5 resp. 4 mm Raschig rings. Air was taken as the gas phase. Several liquids were used.In this contribution we describe the transition from gas-continuous to pulsing flow, the liquid holdup and the pressure drop over the column. The transition can be described by an effective Froude-number. Correlations are set up for the transition point as well as for the hold-up.Pressure drop is shown to be linearly dependent upon the pulse frequency. In a separate series of experiments the transition to pulsing flow was measured in a 5 mm capillary tube, used as a wetted wall column. It became clear, that the onset of pulsing flow in such a capillary is not determined by the same parameter as the onset of pulsing flow in a packed column.  相似文献   

8.
The influence of liquid maldistribution at the top of the packing on flow characteristics in packed beds of gas and liquid cocurrent downflow (trickle beds) is experimentally investigated. Particular attention is paid to the effect of gas and liquid flow rates on flow development. Tests are made in the trickling and pulsing flow regimes. A uniform, a half-blocked and a quarter-blocked liquid distributor is tested. Packings of various sizes and shapes are employed. Data are presented on pressure drop and liquid holdup as well as trickling to pulsing flow transition. Diagnosis of radial and axial liquid distribution is made by means of conductance probes. The effects of liquid foaming, bed pre-wetting, top-bed material, and blockage midway the bed on liquid distribution are also examined. Overall, liquid waves in the pulsing flow regime have a beneficial effect, promoting uniform liquid distribution in the bed cross section.  相似文献   

9.
高炉焦炭层区渣、铁滞留特性的冷态模拟   总被引:2,自引:0,他引:2  
为阐明高炉下部熔融物的滞留特性,对填料床内液体的滞留量进行了冷态模拟实验研究,考察了液体的粘度、密度和表面张力、填料的粒度和形状及液体的流速等影响因素. 结果表明,液体的粘度越大、表面张力越大、密度越小,则静态滞留量hs越大. 它们的影响程度为密度>表面张力>粘度. 填料的粒度、形状系数和孔隙度越小,则hs越大. 液体流量增加时,hs大的固液组合总滞留量ht仍然较大,因此影响hs的各种因素也是影响动态滞留量hd的主要因素. 得到了无气体流动条件下的hs和hd及气液逆流条件下载点至泛点间ht的计算式,计算结果与实验数据吻合较好. 对于实际过程,不考虑煤气流影响时,高炉内熔融物滞留量的大小由hs决定,焦炭粒度对hs的影响最大.  相似文献   

10.
The effects of tube diameter, coil diameter, helix angle and liquid viscosity on flow patterns, pressure drop and holdup for cocurrent gas-liquid flow in helically coiled tubes have been investigated. Nine coils of varying coil diameter and helix angle have been used with liquids of three different viscosities and air at varying pressures. The effect of tube diameter on pressure drop and holdup was determined by using tubes of diameters up to 2-in. Flow patterns were adequately predicted for all the systems by Baker's plot. Small helix angles were found to have no effect on pressure drop or holdup in coiled tubes. Both pressure drop and holdup could be adequately correlated using the Lockhart-Martinelli approach with modified correlating parameters.  相似文献   

11.
The hydrodynamics and mass transfer in a large diameter bubble column (Dc 0.305 m), specifically, the effects of gas velocity and the presence of solids on the gas holdup structure, gas-liquid interfacial area, and volumetric mass transfer coefficients in viscous as well as low viscosity solutions are studied. The sulfite oxidation technique was employed to measure the gas-liquid interfacial area. Volumetric mass transfer coefficients were measured using a chemical method (sulfite oxidation) as well as physical absorption of oxygen from air, and the overall gas holdups were measured using the hydrostatic head technique. The effect of solids on the gas holdup structure was examined using the dynamic gas disengagement method. With the addition of polystyrene particles, the gas-liquid interfacial area decreased for low viscosity systems, whereas it increased for viscous systems. This was shown to be due to the effect of solids on bubble coalescence. The wettability characteristics of solid surfaces in the presence of different liquids have been suggested as the reason for the effect of solids on coalescence. Oil shale slurries presented a special case because of the mineral dissolution effect.  相似文献   

12.
Flow structure was characterized in a 76 mm diameter by 2.0 m high liquid‐solid circulating fluidized bed (LSCFB) with different viscous liquids ranging from 1.0 mPa·s to 4.8 mPa·s. Measurements of mean and local solids holdup were carried out in the axial and the radial direction, respectively. The results showed that a uniform axial and a nonuniform radial distribution of the time‐averaged solids holdup appeared in the LSCFB. The viscosity of the liquid phase reduces the nonuniform distribution of solid particles in the radial direction. By examining the instantaneous data signals, flow behavior in a viscous system was found to be more uniform and less vigorous. To further understand the hydrodynamics in a LSCFB, Hurst's rescaled range (R/S) analysis was also adopted to analyze its stochastic characteristics and the local flow properties.  相似文献   

13.
Hydrodynamic data obtained from laboratory‐scale trickle‐beds often fail to accurately represent industrial‐scale systems with high packing aspect ratios and column‐to‐particle diameter ratios. In this study, pressure drop, liquid holdup, and flow regime transition were investigated in a pilot‐scale trickle‐bed column of 33 cm ID and 2.45 m bed height packed with 1.6 mm × 8.4 ± 1.4 mm cylindrical extrudates for air‐water mass superficial velocities of 0.0023 – 0.094 kg/m2s and 4.5 – 45 kg/m2s, respectively, at atmospheric pressure. Significant deviation was observed from pressure drop and liquid holdup correlations at low liquid flows rates, corresponding to gravity‐driven flow limit. Likewise, liquid saturation is overestimated by correlations at high liquid flow rates, owing to significantly reduced wall effects. Lastly, trickle‐to‐dispersed bubble flow and trickle‐to‐pulsing flow regime transitions are reported using a combination of visual observations and analysis of the magnitude of local pressure fluctuations within the column. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2560–2569, 2018  相似文献   

14.
In the present study verification is carried out of mathematical criteria that define the boundary between two hydrodynamic regimes: the gas continuous flow (GCF) regime and the pulsing flow (PF) regime. Attention is focused on the criterion derived using the model of K. Grosser, R.G. Carbonell and S. Sundaresan, AIChE J., 34 (1988) 1850–1860, and the parametric sensitivity of this criterion is analysed. Next, based on the measured values of the gas pressure drop in a reactor the verification of some selected parameters is carried out by fitting the theoretical and experimental boundary lines separating the GCF and PF regimes. Experimental results are also presented concerning the determination of parameters characterising the pulsing flow through the bed, namely the frequency of pulsations and the pulse structure. These parameters were determined for the system nitrogen–water, and also for liquids differing from water in their physicochemical properties.  相似文献   

15.
In this paper we demonstrate several series of experiments for the measurement of viscosity of neat glycerol and its aqueous solutions using a tank-tube viscometer. Measuring viscosity of highly viscous liquids with the tank-tube viscometer is easier than other types of viscometers. This inexpensive viscometer continuously generates numerous reproducible viscosity data of highly viscous neat glycerol and its aqueous solutions under given experimental conditions such as a desired temperature and a desired concentration of water in aqueous glycerol solutions.

Fabricating the tank-tube viscometer is inexpensive, since this viscometer does not need sophisticated accessories such as a high-pressure liquid pump, a sensitive pressure sensor, and an accurate flow meter. The tank-tube viscometer consists of a large-diameter reservoir and a long, small-diameter, vertical tube.

The viscosity equation was developed under the following assumptions. Both the quasi steady state approach and the negligible friction loss due to a sudden contraction between the reservoir tank and the tube are valid. The kinetic energy of the emerging stream from the bottom end of the vertical tube of the tank-tube viscometer also is assumed to be negligible. Very viscous glycerol and its aqueous solutions were used to test the viscometer by comparing viscosity values from the viscometer with those from literatures.

The main objective of this study is to demonstrate effects of water as well as temperature on viscosity of aqueous glycerol solutions, applying experimental data of accumulated amounts of aqueous glycerol solutions at various drain durations to the newly-developed viscosity equation for the fabricated tank-tube viscometer.  相似文献   

16.
The stratified configuration is one of the basic and most important distributions during two phase flow through horizontal pipes. A number of studies have been carried out to understand gas‐liquid stratified flows. However, not much is known regarding the simultaneous flow of two immiscible liquids. There is no guarantee that the information available for gas‐liquid cases can be extended to liquid‐liquid flows. Therefore, the present work attempts a detailed investigation of liquid‐liquid stratified flow through horizontal conduits. Gas‐liquid flow exhibits either smooth or wavy stratified orientations, while liquid‐liquid flow exhibits other distinct stratified patterns like three layer flow, oil dispersed in water, and water flow, etc. Due to this, regime maps and transition equations available for predicting the regimes in gas‐liquid flow cannot be extended for liquid‐liquid cases by merely substituting phase physical properties in the equations. Further efforts have been made to estimate the in‐situ liquid holdup from experiments and theory. The analysis considers the pronounced effect of surface tension, and attempts to modify the Taitel‐Dukler model to account for the curved interface observed in these cases. The curved interface model of Brauner has been validated with experimental data from the present work and those reported in literature. It gives a better prediction of liquid holdup in oil‐water flows and reduces to the Taitel‐Dukler model for air‐water systems.  相似文献   

17.
THE EFFECT OF LIQUID PHYSICAL PROPERTIES ON DRIFT VELOCITY   总被引:1,自引:0,他引:1       下载免费PDF全文
Drift velocity is a very important paramcter for predictirg the pool volumetric void fraction. Two-phase system of gas and high viscous liquids pool is encountered in various engineering applications. A review of the literature shows no data for explaining the effect of highly viscous liquids on the drift velocity. This paper's analysis shows that there is a considerable influence. It is shown that the foaming behaviour of liquids is dependent on the surface properties. For some highly viscous liquids at a given superficial gas velocity, the viscosity changes with time. The effect of "foam" and "time" on drift velocity is clearly elucidated.  相似文献   

18.
引 言在石油化工工业的加氢处理中 ,滴流床反应器常操作在接近脉冲流流型区域[1] .脉冲流下气液流速都比较高 ,所以该操作方式适合催化剂活性高、反应速率快的反应[2 ] ,而且气液流量大有利于强放热反应的反应热从反应器移出。流体力学参数如脉冲速度、脉冲频率、持液量、气液分布、压力降等对于该类反应器的工业设计及操作具有很重要的意义 .Sato等[3] 较早地对脉冲流的特性进行过定性的实验研究 .Blok等[4 ] 以及Tsochatzidis等[5] 通过电导法也对脉冲流宏观特性进行过研究 .本文用不同的实验方法对滴流床反应器内脉…  相似文献   

19.
This paper presents an experimental analysis of the influence of the liquid rheology on the gas flow pattern in a bubble column reactor. Aqueous solutions of xanthan are selected as an example of non-Newtonian shear thinning fluid. Averaged gas holdup is determined by two experimental techniques: parietal pressure probes and electrical resistance tomography (ERT). ERT is also used to provide 2D images of the gas phase distribution in a column cross-section. Bubble size distributions are evaluated by a gas disengagement technique using the parietal pressure probes. All these techniques clearly show the gas flow pattern is different in Newtonian and non-Newtonian fluids. Gas holdup values decrease when increasing the liquid viscosity and reach a minimum or a plateau. Homogeneous flow regime, observed in water at low gas velocities, tends to disappear when viscosity increases. This evolution is visualized by a much less isotropic distribution of the gas phase within cross-section of the column and by the appearance of much larger bubbles due to an increased coalescence phenomenon.  相似文献   

20.
《Chemical engineering science》2002,57(11):1931-1942
A fully predictive one-dimensional mechanistic model was developed for describing the hydrodynamics of power-law fluids in trickle-bed reactors. The model is a generalization of the slit approach to the case of non-Newtonian fluids obeying Ostwald-deWaele rheological behavior. Without recourse to adjustable parameters, the proposed model enabled prediction of the experimental values of (i) total two-phase total pressure drop and total liquid holdup in the trickle flow regime, (ii) frictional pressure drop in single-phase flows through packed beds, and (iii) total liquid holdup in gravity driven liquid downflow and stagnant gas through packed beds. Parametric simulations guided by knowledge of the behavior of highly viscous Newtonian liquids in trickle beds highlighted the capability of the model in the simulation and design of trickle flow operation using power-law fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号