首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atmospheric particulate matter (PM) fractions (PM(10) and PM(2.5)) were sampled concurrently between June 2004 and May 2005 at two sites (urban and suburban) in Izmir, Turkey. The elemental composition of PM (Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V, and Zn) was determined using inductively coupled plasma-optical emission spectrometer. Elemental compositions of several PM sources were also characterized. Positive matrix factorization (PMF) and chemical mass balance modeling (CMB) were applied to determine the PM sources and their contributions to air concentrations. The major contributors to PM were fossil fuel burning, traffic emissions, mineral industries and marine salt according to the PMF results. However, undetermined parts were more than 40%. On the other hand, the contributions to PM could be determined completely by CMB, and the dominant contributor was traffic with >70% at the two sites. Fossil fuel burning, mineral industries, marine salt and natural gas-fired power plant were the minor contributors.  相似文献   

2.
There is strong epidemiological evidence of association between PM10 (particulate matter with an aerodynamic diameter less than or equal to 10 μm) and adverse health outcomes including death and increased hospital admissions for cardiopulmonary conditions. Ambient PM10 surrogates such as diesel exhaust particles (DEP), a common component of UK PM10, have been shown to induce lung inflammation in both humans and rodents. To date, few studies have reported on the toxicological response of UK PM10 in experimental animals.This study examines the pulmonary toxicological responses in male Sprague Dawley rats following the intratracheal instillation of Cardiff urban PM10. A mild but significant change in lung permeability was observed in the lung post-instillation of a high (10 mg) dose of the whole PM10 as adjudged by increases in lung to body weight ratio and total acellular lavage protein. Such effects were less marked following instillation of a water-soluble fraction (80% of the total mass) but histological examination showed that lung capillaries were swollen in size with this treatment.In conclusion, conventional toxicological, histological and toxicogenomic studies have indicated that Cardiff PM10 exhibits low bioreactivity in the form of mild permeability changes. Differential gene expression was observed when the lung was treated with whole PM10, containing durable particles, in comparison with the water-soluble fraction of PM10 that was devoid of particles. Such changes were linked to different histopathological events within the lung.  相似文献   

3.
There are several models that can be used to evaluate roadside air quality. The comparison of the operational performance of different models pertinent to local conditions is desirable so that the model that performs best can be identified. Three air quality models, namely the 'modified General Finite Line Source Model' (M-GFLSM) of particulates, the 'California Line Source' (CALINE3) model, and the 'California Line Source for Queuing & Hot Spot Calculations' (CAL3QHC) model have been identified for evaluating the air quality at one of the busiest traffic intersections in the city of Guwahati. These models have been evaluated statistically with the vehicle-derived airborne particulate mass emissions in two sizes, i.e. PM10 and PM2.5, the prevailing meteorology and the temporal distribution of the measured daily average PM10 and PM2.5 concentrations in wintertime. The study has shown that the CAL3QHC model would make better predictions compared to other models for varied meteorology and traffic conditions. The detailed study reveals that the agreements between the measured and the modeled PM10 and PM2.5 concentrations have been reasonably good for CALINE3 and CAL3QHC models. Further detailed analysis shows that the CAL3QHC model performed well compared to the CALINE3. The monthly performance measures have also led to the similar results. These two models have also outperformed for a class of wind speed velocities except for low winds (<1 m s(-1)), for which, the M-GFLSM model has shown the tendency of better performance for PM10. Nevertheless, the CAL3QHC model has outperformed for both the particulate sizes and for all the wind classes, which therefore can be optional for air quality assessment at urban traffic intersections.  相似文献   

4.
PM2.5 chemical composition in Hong Kong: urban and regional variations   总被引:1,自引:0,他引:1  
Chemically speciated PM2.5 measurements were made at roadside, urban, and rural background sites in Hong Kong for 1 year during 2000/2001 to determine the spatial and temporal variations of PM2.5 mass and chemical composition in this highly populated region. Annual average PM2.5 concentrations at the urban and rural sites were 34.1 and 23.7 microg m(-3), respectively, approximately 50-100% higher than the United States' annual average National Ambient Air Quality Standard (NAAQS) of 15 microg m(-3). Daily PM2.5 concentrations exceeded the U.S. 24-h NAAQS of 65 microg m(-3) on 19 days, reaching 131+/-8 microg m(-3) at the roadside site on 02/28/2001. Carbonaceous aerosol is the largest contributor to PM2.5 mass (explaining 52-75% of PM2.5 mass at the two urban sites and 32% at the background site), followed by ammonium sulfate (ranging from 23% to 37% at the two urban sites and 51% at the background site). Ammonium sulfate and crustal concentrations showed more uniform spatial distributions, while the largest urban-rural contrasts found in carbonaceous aerosol (likely due to emissions from on-road gasoline and diesel vehicles). Marine influences accounted for 7% of the mass at the background site (more than twice as much as at the two urban sites). Ternary diagrams are utilized to illustrate the different spatial patterns.  相似文献   

5.
Coal burning generates toxic elements, some of which are characteristic of coal combustion such as arsenic and selenium, besides conventional coal combustion products. Airborne particulate samples with aerodynamic diameter less than 10 microm (PM(10)) were collected in Taiyuan, China, and multi-element analyses were performed by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of arsenic and selenium from ambient air in Taiyuan (average 43 and 58 ng m(-3), respectively) were relatively high compared to what is reported elsewhere. Arsenic and selenium were found to be highly correlated (r=0.997), indicating an overwhelmingly dominant source. Correlation between these two chalcophile elements and the lithophile element Al is high (r is 0.75 and 0.72 for As and Se, respectively). This prompted the hypothesis that the particles were from coal combustion. The enrichment of the trace elements could be explained by the volatilization-condensation mechanism during coal combustion process. Even higher correlations of arsenic and selenium with PM(10) (r=0.90 and 0.88) give further support that airborne particulate pollution in Taiyuan is mainly a direct result of heavy coal consumption. This conclusion agrees with the results from our previous study of individual airborne particles in Taiyuan.  相似文献   

6.
A longitudinal study on spatial and temporal behavior of particles less than 2.5 μm (PM2.5), solvent extracted organic matter (SEOM), polycyclic aromatic hydrocarbons (PAH), n-alkanes and nitro-PAH was carried out for a full year in 2006, at five sites simultaneously around the Metropolitan Zone of Mexico Valley (MZMV). There is rather uniform distribution of PM2.5 and SEOM in the MZMV regarding gravimetric mass concentration, while some specific organic chemical components showed mass heterogeneity. The highest mass concentrations of target compounds occurred in the dry seasons with respect to the rainy season. Bonfires and fireworks are probably responsible for extreme values of PM2.5, SEOM and PAH (≥ 228 g mol− 1). Benzo[ghi]perylene was the most abundant PAH, with C24-C26 the most abundant n-alkanes and 2-nitrofluoranthene and 9-nitroanthracene the most abundant nitro-PAH. The northeast zone was the area with the greatest presence of sources of incomplete diesel combustion, while the central for gasoline combustion. In the southwest, the biogenic sources were more abundant over the anthropogenic sources. This was opposite to the other sites. Factor analysis allowed us to relate different compounds to emitting sources. Three main factors were associated with combustion, pyrolysis and biogenic primary sources while the other factors were associated with secondary organic aerosol formation and industry. Correlation analyses indicated that SEOM originates from different primary emission sources or is formed by different processes than the other variables, except in southwest. Associations among variables suggest that PM2.5 in the northwest and in the southeast originated mainly from primary emissions or consisted of primary organic compounds. PM2.5 in the northeast, central and southwest contains a greater proportion of secondary organic compounds, with the less oxidized organic aerosols in the northeast and the most aged organic aerosol in the southwest. This follows the trends in the prevailing wind directions in MZMV during 2006.  相似文献   

7.
Forecasting models based on stepwise multiple linear regression (MLR) have been developed for Athens and Helsinki. The predictor variables were the hourly concentrations of pollutants (NO, NO2, NOx, CO, O3, PM2.5 and PM10) and the meteorological variables (ambient temperature, wind speed/direction, and relative humidity) and in case of Helsinki also Monin-Obukhov length and mixing height of the present day. The variables to be forecasted are the maximum hourly concentrations of PM10 and NOx, and the daily average PM10 concentrations of the next day. The meteorological pre-processing model MPP-FMI was used for computing the Monin-Obukhov length and the mixing height. The limitations of such statistical models include the persistence of both the meteorological and air quality situation; the model cannot account for rapid changes (on a temporal scale of hours or less than a day) that are commonly associated, e.g., with meteorological fronts, or episodes of a long-range transport origin. We have selected the input data for the model from one urban background and one urban traffic station both in Athens and Helsinki, in 2005. We have used various statistical evaluation parameters to analyze the performance of the models, and inter-compared the performance of the predictions for both cities. Forecasts from the MLR model were also compared to those from an Artificial Neural Network model (ANN) to investigate, if there are substantial gains that might justify the additional computational effort. The best predictor variables for both cities were the concentrations of NOx and PM10 during the evening hours as well as wind speed, and the Monin-Obukhov length. In Athens, the index of agreement (IA) for NOx ranged from 0.77 to 0.84 and from 0.69 to 0.72, in the warm and cold periods of the year. In Helsinki, the corresponding values of IA ranged from 0.32 to 0.82 and from 0.67 to 0.86 for the warm and cold periods. In case of Helsinki the model accuracy was expectedly better on the average, when Monin-Obukhov length and mixing height were included as predictor variables. The models provide better forecasts of the daily average concentration, compared with the maximum hourly concentration for PM10. The results derived by the ANN model where only slightly better than the ones derived by the MLR methodology. The results therefore suggest that the MLR methodology is a useful and fairly accurate tool for regulatory purposes.  相似文献   

8.
Asian dust storms (ADS) originating from the arid deserts of Mongolia and China are a well-known springtime meteorological phenomenon throughout East Asia. The ventilation systems in office utilize air from outside and therefore it is necessary to understand how these dust storms affect the concentrations of PM2.5 and PM10 in both the indoor and outdoor air. We measured dust storm pollution particles in an office building using a direct-reading instrument (PC-2 Quartz Crystal Microbalance, QCM) that measured particle size and concentration every 10 min for 1 h, three times a day. A three-fold increase in the concentrations of PM2.5 and PM10 in the indoor and outdoor air was recorded during the dust storms. After adjusting for other covariates, autoregression models indicated that PM2.5 and PM10 in the indoor air increased significantly (21.7 μg/m3 and 23.0 μg/m3 respectively) during dust storms. The ventilation systems in high-rise buildings utilize air from outside and therefore the indoor concentrations of fine and coarse particles in the air inside the buildings are significantly affected by outside air pollutants, especially during dust storms.  相似文献   

9.
With the aim to determine the presence of individual nitro-PAH contained in particles in the atmosphere of Mexico City, a monitoring campaign for particulate matter (PM10 and PM2.5) was carried out in Northern Mexico City, from April 2006 to February 2007. The PM10 annual median concentration was 65.2 μg m− 3 associated to 7.6 μg m− 3 of solvent-extractable organic matter (SEOM) corresponding to 11.4% of the PM10 concentration and 38.6 μg m− 3 with 5.9 μg m− 3 SEOM corresponding to 15.2% for PM2.5. PM concentration and SEOM varied with the season and the particle size. The quantification of nitro-polycyclic aromatic hydrocarbons (nitro-PAH) was developed through the standards addition method under two schemes: reference standard with and without matrix, the former giving the best results. The recovery percentages varied with the extraction method within the 52 to 97% range depending on each nitro-PAH. The determination of the latter was effected with and without sample purification, also termed fractioning, giving similar results. 8 nitro-PAH were quantified, and their sum ranged from 111 to 819 pg m− 3 for PM10 and from 58 to 383 pg m− 3 for PM2.5, depending on the season. The greatest concentration was for 9-Nitroanthracene in PM10 and PM2.5, detected during the cold-dry season, with a median (10th-90th percentiles) concentration in 235 pg m− 3 (66-449 pg m− 3) for PM10 and 73 pg m− 3 (18-117 pg m− 3) for PM2.5. The correlation among mass concentrations of the nitro-PAH and criteria pollutants was statistically significant for some nitro-PAH with PM10, SEOM in PM10, SEOM in PM2.5, NOX, NO2 and CO, suggesting either sources, primary or secondary origin. The measured concentrations of nitro-PAH were higher than those reported in other countries, but lower than those from Chinese cities. Knowledge of nitro-PAH atmospheric concentrations can aid during the surveillance of diseases (cardiovascular and cancer risk) associated with these exposures.  相似文献   

10.
Over the past decade, member states of the Regional Co-operation Agreement (RCA), an intergovernmental agreement for the East Asia and Pacific region under the auspices of the IAEA with the assistance of international organizations and financial institutions such as the World Bank and the Asian Development Bank, have started to set in place policies and legislation for air pollution abatement. To support planning and evaluate the effectiveness of control programs, data are needed that characterizes urban air quality. The focus of this measurement program describe in this report is on size segregated particulate air pollution. Such airborne particulate matter can have a significant impact on human health and urban visibility. These data provide the input to receptor models that may permit the mitigation of these impacts by identification and quantitative apportionment of the particle sources. The aim of this report is to provide an overview of the measurements of concentrations and composition of particulate air pollution in two size fractions across the participating countries. For many of the large cities in this region, the measured particulate matter concentrations are greater than air quality standards or guidelines that have been adopted in developed countries.  相似文献   

11.
The influence of Saharan dust on the air quality of Southern European big cities became a priority during the last decade. The present study reports results on PM10 monitored at an urban site at 14 m above ground level during an intense Saharan dust transport event. The elemental composition was determined by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) for 12 elements: Si, Al, Fe, K, Ca, Mg, Ti, S, Ni, Cu, Zn and Mn. PM10 concentrations exceeded the EU limit (50 μg/m3) several times during the sampling period. Simultaneous maxima have been observed for the elements of crustal origin. The concentrations of all the elements presented a common maximum, corresponding to the date where the atmosphere was heavily charged with particulate matter permanently for an interval of about 10 h. Sulfur and heavy metal concentrations were also associated to local emissions. Mineral dust represented the largest fraction of PM10 reaching 79%. Seven days back trajectories have shown that the air masses arriving over Athens, originated from Western Sahara. Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis (SEM-EDX) revealed that particle agglomerates were abundant, most of them having sizes < 2 μm. Aluminosilicates were predominant in dust particles also rich in calcium which was distributed between calcite, dolomite, gypsum and Ca-Si particles. These results were consistent with the origin of the dust particles and the elemental composition results. Sulfur and heavy metals were associated to very fine particles < 1 μm.  相似文献   

12.
Particulate matter and gaseous pollutants in residences in Antwerp, Belgium   总被引:1,自引:0,他引:1  
This comprehensive study, a first in Flanders, Belgium, aimed at characterizing the residential indoor air quality of subgroups that took part in the European Community Respiratory Health Survey (ECRHS I—1991 and ECHRS II—1996) questionnaire-based asthma and related illnesses studies. This pilot study aimed at the evaluation of particulate matter and various inorganic gaseous compounds in residences in Antwerp. In addition personal exposure to the gaseous compounds of one individual per residence was assessed. The main objective was to obtain some base-line pollutant levels and compare these with studies performed in other cities, to estimate the indoor air quality in residences in Antwerp. Correlations between the various pollutant levels, indoor:outdoor ratios and the micro-environments of each residence were investigated. This paper presents results on indoor and ambient PM1, PM2.5 and PM10 mass concentrations, its elemental composition in terms of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Pb, Al, Si, S and Cl and the water-soluble ionic concentrations in terms of SO42−, NO32−, Cl, NH4+ K+, Ca2+. In addition, indoor, ambient and personal exposure levels of the gases NO2, SO2, and O3 were determined. Elevated indoor:outdoor ratios were found for NO2 in residences containing gas stoves. In smoker's houses increased PM concentrations of 58 and 43% were found for the fine and coarse fractions respectively. Contrary to the fact that all I/O ratios of the registered elements in each individual house were significantly correlated to each other, no correlation could be established between the I/O ratios of the different houses, thus indicating a unique micro-environment for each residence. Linear relationships between the particulate matter elemental composition, SO2 and O3 levels indoors and outdoors could be established. No linear relationships between indoor and outdoor NO2 and particulate mass concentrations were found.  相似文献   

13.
The inorganic main elements, trace elements and PAHs were determined from selected PM1, PM2.5 and PM10 samples collected at the Nordic background station in Virolahti during different seasons and during the wildfire episodes in 2006. Submicron particles are those most harmful to human beings, as they are able to penetrate deep into the human respiratory system and may cause severe health effects. About 70-80%, of the toxic trace elements, like lead, cadmium, arsenic and nickel, as well as PAH compounds, were found in particles smaller than 1 µm. Furthermore, the main part of the copper, zinc, and vanadium was associated with submicron particles. In practice, all the PAHs found in PM10 were actually in PM2.5. For PAHs and trace elements, it is more beneficial to analyse the PM2.5 or even the PM1 fraction instead of PM10, because exclusion of the large particles reduces the need for sample cleaning to minimize the matrix effects during the analysis. During the wildfire episodes, the concentrations of particles smaller than 2.5 µm, as well as those of submicron particles, increased, and also the ratio PM1/PM10 increased to about 50%. On the fire days, the mean potassium concentration was higher in all particle fractions, but ammonium and nitrate concentrations rose only in particles smaller than 1.0 µm. PAH concentrations rose even to the same level as in winter.  相似文献   

14.
To investigate the potential role of ammonia in ion chemistry of PM2.5 aerosol, measurements of PM2.5 (particulate matter having aerodynamic diameter < 2.5 µm) along with its ionic speciation and gaseous pollutants (sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3) and nitric acid (HNO3)) were undertaken in two seasons (summer and winter) of 2007-2008 at four sampling sites in Kanpur, an urban-industrial city in the Ganga basin, India. Mean concentrations of water-soluble ions were observed in the following order (i) summer: SO42− (26.3 µg m− 3) > NO3 (16.8) > NH4+ (15.1) > Ca2+ (4.1) > Na+ (2.4) > K+ (2.1 µg m− 3) and (ii) winter: SO42− (28.9 µg m− 3) > NO3 (23.0) > NH4+ (16.4) > Ca2+(3.4) > K+(3.3) > Na+ (3.2 µg m− 3). The mean molar ratio of NH4+ to SO42− was 2.8 ± 0.6 (mostly >2), indicated abundance of NH3 to neutralize H2SO4. The excess of NH4+ was inferred to be associated with NO3 and Cl. Higher sulfur conversion ratio (Fs: 58%) than nitrogen conversion ratio (Fn: 39%) indicated that SO42− was the preferred secondary species to NO3. The charge balance for the ion chemistry of PM2.5 revealed that compounds formed from ammonia as precursor are (NH4)2SO4, NH4NO3 and NH4Cl. This study conclusively established that while there are higher contributions of NH4+, SO42− to PM2.5 in summer but for nitrates (in particulate phase), it is the winter season, which is critical because of low temperatures that drives the reaction between ammonia and HNO3 in forward direction for enhanced nitrate formation. In summary, inorganic secondary aerosol formation accounted for 30% mass of PM2.5 and any particulate control strategy should include optimal control of primary precursor gases including ammonia.  相似文献   

15.

Background

Saharan dust outbreaks are a common phenomenon in the Madrid atmosphere. The current Directive 2008/50 CE governing air quality in European cities, draws no distinction between which particulate matter (PM10, PM2.5 or PM10-2.5) would be the best indicator on days with/without Saharan dust intrusions. This study sought to identify the role played by Saharan dust in the relationship between particulate matter (PM10, PM2.5 and PM10-2.5) concentrations and daily mortality among the elderly in the city of Madrid.

Methods

We conducted an ecological longitudinal time-series study on daily mortality among the over-75 age group, from 2003 to 2005. Poisson regression models were constructed for days with and without Saharan dust intrusions. The following causes of daily mortality were analysed: total organic causes except accidents (International Classification of Diseases-10th revision (ICD-10): A00-R99); circulatory causes (ICD-10: I00-I99); and respiratory causes (ICD-10: J00-J99). Daily mean PM10, PM2.5 and PM10-2.5 levels were used as independent variables. Control variables were: other ambient pollutants (chemical, biotic and acoustic); trend; seasonalities; influenza epidemics; and autocorrelations between mortality series.

Results

While daily mean PM2.5 concentrations in Madrid displayed a significant statistical association with daily mortality for all the above causes on days without Saharan dust intrusions, this association was not in evidence for PM10 or PM10-2.5 in the multivariate models. The relative risks (RRs) obtained for an increase of 10 μg/m3 in PM2.5 concentrations were: 1.023 (1.010-1.036) for total organic causes; 1.033 (1.031-1.035) for circulatory causes; and 1.032 (1.004-1.059) for respiratory causes. On Saharan dust days, a significant statistical association was detected between PM10 (though not PM2.5 or PM10-2.5) and mortality for all 3 causes analysed, with RRs statistically similar to those reported for PM2.5.

Conclusions

The best air quality indicators for evaluating the short-term health effects of particulate matter in Madrid are therefore PM10 concentrations on days with, and PM2.5 concentrations on days without Saharan dust outbreaks. This fact should be taken into account in a European Directive regulating ambient air quality in almost all countries in the Mediterranean area.  相似文献   

16.
The aim of this study was to identify the relationship between the concentrations of PM2.5 (particulate matter less than 2.5 μm) and the temporal variation of the monitored gases at Sohar highway, Oman, from November 2014 to February 2015. The hourly concentrations of surface ozone (O3), nitric dioxide (NO2) and sulphur dioxide (SO2) were measured by an open-path differential optical absorption spectroscopy instrument installed across Sohar highway. Additionally, the same gases and the meteorological parameters were measured in the same location of the PM2.5 analyser. The findings of this study show that on the hourly time scale, PM2.5 and O3 were very weakly and negatively correlated. In contrast, on the daily time scale, PM2.5 and O3 were positively rather weakly correlated. Stronger correlation coefficient was found between 24 h averages of PM2.5 and daily maximum O3 concentrations. A policy implication of these findings could be that reducing the emissions of O3 precursors reduces the levels of PM2.5 as well.  相似文献   

17.
An in vitro plasmid assay was employed to study the bioreactivity of PM (particulate matter) in Beijing air. It was found that the TD20 (toxic dose of PM causing 20% of plasmid DNA damage) of Beijing PM can be as low as 28 microg ml(-1) and as high as >1000 microg ml(-1). Comparison of the physical properties, such as morphology and size distribution, and oxidative potential indicates that the PM(2.5) (particulate matter with an aerodynamic diameter of 2.5 microm or less) has a stronger oxidative capacity than PM(10) (particulate matter with an aerodynamic diameter of 10 microm or less), and that the higher number percentages of soot aggregates and lower number percentages of mineral and fly ashes are associated with the higher oxidative capacity. Although the mass of PM(10) during dust storms is commonly 5 times higher than that during non-dust storm episodes, the oxidative capacity of PM(10)s of dust storms is much lower than that of the non-dust storm PM(10)s. The water-soluble fractions and intact whole particle solutions of Beijing airborne particles produce similar plasmid assay results, demonstrating that the bioreactivity of Beijing airborne particles is mainly sourced from the water-soluble fraction. In the samples with stronger bioreactivity, the total analyzed water soluble Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As and Pb (ppm) concentrations are higher. The water soluble zinc shows a good negative correlation with TD20s, suggesting that the water-soluble zinc is probably the major element responsible for the plasmid DNA damage.  相似文献   

18.
Results on interpretation of the variability of regional background PM levels in the Western Mediterranean basin (WMB) are presented. Mean PM levels recorded at Montseny, MSY (North-Eastern Spain) in the 2002-2007 period reached 17, 13 and 11 µg/m3 of PM10, PM2.5 and PM1, respectively.The daily evolution of PM levels is regulated by the breeze circulation (mountain and sea breezes). PM levels are lower at the rural sites at night owing to the nocturnal drainage flows and to the lowering of the mixing layer height below the MSY high. These nocturnal low levels allowed us to estimate the continental background PM levels. At midday, the atmospheric pollutants accumulated in the pre-coastal depression are transported upwards by the breeze, increasing PM levels.Maximum PM10 levels were recorded in summer, and February-March and November, and minimum values in the rest of the year coinciding with the highest frequency of Atlantic advection. PM peak episodes attributed to Saharan dust outbreaks were recorded in summer and February-March. In addition, anticyclonic situations (February-March and November) may impact in elevated rural areas by increasing hourly levels of PM1 up to 75 µg/m3. This scenario induces the stagnation of pollutants in the pre-coastal depression. Solar radiation activates mountain winds, transporting polluted air masses from the valleys to elevated areas resulting in an increase of fine PM levels in areas outside the boundary layer.A significant decrease in PM annual means (40% and 34% for the entire monitoring period, 7 µgPM10/m3 and 5 µgPM2.5/m3) was recorded at MSY between 2002 and 2007. There appears to be no single cause behind these trends. This could partially be ascribed to the varying frequency and intensity of Saharan dust episodes, but also to large-scale meteorological processes or cycles, and/or to local or meso-scale processes such as nearby anthropogenic emission sources.  相似文献   

19.
Variations in pulmonary function tests (PFTs) due to agriculture crop residue burning (ACRB) on children between the age group of 10 to 13 years and the young between 20 to 35 years are studied. The effects of exposure to smoke due to rice-wheat crop residue burning on pulmonary functions like Force Vital Capacity (FVC), Force Expiratory Volume in one second (FEV1), Peak Expiratory Flow (PEF) and Force Expiratory Flow in 25 to 75% of FVC (FEF25-75%) on 40 healthy subjects of rural/agricultural area of Sidhuwal village of Patiala City were investigated for a period from August 2008 to July 2009. Measurements were taken by spirometry according to the American Thoracic Society standards. High volume sampler (HVS) and Anderson Impactor were used to measure the concentration levels of SPM, PM10 and PM2.5 in ambient air of the Sidhuwal village. A significant increase in the concentration levels of SPM, PM10 and PM2.5 was observed due to which PFTs of the subjects showed a significant decrease in their values, more prominently in the case of children. PFTs of young subjects recovered up to some extent after the completion of burning period but the PFT values of children remained significantly lower (p < 0.001) even after the completion of burning episodes. Small size particulate matter (PM2.5 and PM10) affected the PFTs to a large extent in comparison to the large size particulate matter (SPM). The study indicates that ACRB is a serious environmental health hazard and children are more sensitive to air pollution, as ACRB poses some unrecoverable influence on their PFTs.  相似文献   

20.
Three monthly 24-hour samples of airborne aerosols (PM10 and PM2.5) were collected at an urban and a rural site of the North central, semi-arid part of India during May 2006 to March 2008. Seven trace metals (Pb, Zn, Ni, Fe, Mn, Cr and Cu) were determined for both sizes. The annual mean concentration for PM10 was 154.2 µg/m3 and 148.4 µg/m3 at urban and rural sites whereas PM2.5 mean concentration was 104.9 µg/m3 and 91.1 µg/m3 at urban and rural sites, respectively. Concentrations of PM10 and PM2.5 have been compared with prescribed WHO standards and NAAQS given by CPCB India and were found to be higher. Weekday/weekend variations of PM10 and PM2.5 have been studied at both monitoring sites. Lower particulate pollutant levels were found during weekends, which suggested that anthropogenic activities are major contributor of higher ambient particulate concentration during weekdays. Significant seasonal variations of particulate pollutants were obtained using the daily average concentration of PM10 and PM2.5 during the study period. PM2.5/PM10 ratios at urban and rural sites were also determined during the study period, which also showed variation between the seasons. Three factors have been identified using Principal Component Analysis at the sampling sites comprising resuspension of road dust due to vehicular activities, solid waste incineration, and industrial emission at urban site whereas resuspension of soil dust due to vehicular emission, construction activities and wind blown dust carrying industrial emission, were common sources at rural site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号