首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Composite materials such as glass fibre reinforced polymers (GFRPs) possess the advantages of high strength and stiffness, as well as low density and highly flexible tailoring; therefore, their potential in replacing conventional materials (such as concrete, aluminium and steel) in building façade has become attractive. This paper addresses one of the major issues that hinder the extensive use of composite structures in the high-rise building industry, which is the fire resistance. In this study, a fire performance enhancement strategy for multilayer composite sandwich panels, which are comprised of GFRP composite facets and polyethylene foam core, is proposed with the addition of environmentally friendly, fire retardant unsaturated polyester resins and gel-coats. A series of burning experimental studies including thermo-gravimetric analysis (TGA) and single burning item (SBI) are carried out on the full scale composite sandwich as well as on single constituents, providing information regarding heat release rate, total heat release, fire growth rate, and smoke production. Experimental results are compared with fire safety codes for building materials to identify the key areas for improvements. A fire dynamic numerical model has been developed in this work using the Fire Dynamics Simulator (FDS) to simulate the burning process of composite structures in the SBI test. Numerical results of heat production and growth rate are presented in comparison with experimental observations validating the computational model and provide further insights into the fire resisting process. Parametric studies are conducted to investigate the effect of fire retardant additives on the fire performance of the composite sandwich panel leading to optimum designs for the sandwich panel.  相似文献   

2.
The distiller’s dried grains with solubles (DDGS) were treated by smashing and water washing processes. The treatment effects on DDGS were analyzed, and the results showed that the thermal stability and the hydrophobicity of DDGS were improved by the treatment processes. The flame retarded biocomposites of poly(lactic acid) (PLA) with DDGS and degradable polymeric flame retardant resorcinol di(phenyl phosphate) (RDP) were prepared. The prepared biocomposites had good mechanical properties and the tensile strength of the biocomposite containing 15 wt% RDP and 15 wt% DDGS reached approximately 53 MPa. Meanwhile, using the limited oxygen index (LOI) and the underwriters laboratory (UL-94) tests, for the biocomposite, the LOI value was approximately 27.5% and V-0 rating in UL-94 was attained. Furthermore, the peak heat release rate of this biocomposite was reduced to 275 kW/m2 compared with 310 kW/m2 for pure PLA. After burning of the biocomposites, compact and coherent charred layer was formed and the char residues were analyzed in detail.  相似文献   

3.
用CONE/TG研究含淀粉膨胀阻燃聚丙烯体系的阻燃和烟释放   总被引:12,自引:0,他引:12  
利用锥形量热仪(CONE)在50kW/m^2热辐照条件下,并配合TG和极限氧指数(LOI)对含淀粉膨胀阻燃聚丙烯(PP)体系的阻燃和烟释放进行了研究,通过对获得的最大热释放速率(pk-HRR),总烟释放量(TSP)、平均比消光面积(av-SEA)及质量损失速度燃烧热(av-EHC)、最大烟产生速率(pk-SPR)、总烟释放量(TSP)、平均比消光面积(av-SEA)及质量损失速度(MLR)等参数和  相似文献   

4.
As-received and pre-treated sepiolite/epoxy systems, characterised by an inorganic content from 2 to 10 wt.%, were investigated in order to assess induced-filler effect on degradation and fire behaviour.Thermogravimetrical results show that the thermal stability of the hosting epoxy, is slightly affected by the presence of sepiolite for both typologies; whereas, changes induced in char morphology by the pre-treated clay will significantly affect the fire behaviour of the final nanocomposite.Modelling of thermo-gravimetrical results in air atmosphere, by means of Kissinger procedure, shows a noteworthy reduction of activation energies associated with each degradation steps, especially at highest sepiolite content either by using as-received and pre-treated inorganic filler. This substantially indicates that the presence of sepiolite shorten the whole degradation process on the temperature scale. On the other hand, the different morphology of the char layer during the burning process can have relevant flame retardant effects acting on both condensate and vapour phase. Analysing the cone calorimetric data, a reduction of about 27% of the peak of heat release rate for the highest sepiolite percentage is measured and the burning total period is increased thus confirming that sepiolite when pre-treated represents a valid fire retardant inorganic filler for such a system.  相似文献   

5.
利用锥型量热令(CONE)在50kW/m^2的热辐照条件下,研究了纯PET和阻燃PET的阻燃和烟释放。通过对获得的质量损失速率(MLR),最大热释放速率(pk-HRR)、总热释放(THR)、有效平均燃烧热(av0EHC)、平均烟比率(av-SR)、平均比消光面积(av-SEA)及CO、CO2释放量的分析表明,阻燃PET的pk-HRR、THR和av-EHC等比纯PET有明显的降低,表现了良好的阻燃和抑烟作用。  相似文献   

6.
A plastic micro buckling approach is investigated in order to see whether it can be used to analytically predict the residual strength of carbon fiber sandwich structures.

A parametric study on impact damage resistance and residual strength of sandwich panels with carbon fiber-vinylester faces and PVC foam core is conducted. Two sandwich configurations are studied. The first configuration consists of thin faces and an intermediate density core, representative of a panel from a superstructure. The second configuration consists of thick faces and a high density core, representative of a panel from a hull. Two different impactor geometries are used. One spherical impactor and one pyramid shaped impactor are used in a drop weight rig to inflict low velocity impact damage of different energy levels in the face of the sandwich.

The damages achieved ranges from barely visible damages to penetration of one face. Residual strength is tested using in-plane compression of the sandwich plates either instrumented with strain gauges or monitored with digital speckle photography.  相似文献   


7.
Free vibration analysis of functionally graded material sandwich plates is studied using a refined higher order sandwich panel theory. A new type of FGM sandwich plates, namely, both functionally graded face sheets and functionally graded flexible core are considered. The functionally graded material properties follow a power-law function. The first order shear deformation theory is used for the face sheets and a 3D-elasticity solution of weak core is employed for the core. On the basis of continuities of the displacements and transverse stresses at the interfaces of the face sheets and the core, equations of motion are obtained by using Hamilton’s principle. The accuracy of the present approach is validated by comparing the analytical results obtained for a degradation model (functionally graded face sheets and homogeneous flexible core) with ones published in the literatures, as well as the numerical results obtained by finite element method and good agreements are reached. Then, parametric study is conducted to investigate the effect of distribution of functionally graded material properties, thickness to side ratio on the vibration frequencies.  相似文献   

8.
无机杨木刨花板制备及性能   总被引:2,自引:0,他引:2       下载免费PDF全文
以杨木刨花和无机胶黏剂为主要原料,通过冷压成型工艺制备了无机杨木刨花板,研究了不同施胶量和密度对无机杨木刨花板物理力学性能的影响,通过XRD和SEM分析了不同施胶量及密度对无机杨木刨花板性能的影响机制,同时通过锥型量热仪分析了无机杨木刨花板的阻燃抑烟性能。结果表明:一方面,随着施胶量增大,无机杨木刨花板静曲强度(MOR)和弹性模量(MOE)先增大后减小,同时,内结合强度(IB)逐渐增大,24 h吸水厚度膨胀率(TS)逐渐减小。施胶量为57%时MOR和MOE分别达到最大值21.5 MPa和4360 MPa,施胶量为65%时IB达到最大值2.61MPa,24 h TS达到最小值3.36%。随着施胶量增大,燃烧的峰值热释放速率(HRR)降低,HRR到达峰值的时间推迟,总热释放量(THR)和总生烟量(TSP)减少。另一方面,随着密度增大,MOR、MOE均逐渐增大,IB先增大后减小,24 h TS先减小后增大,无机杨木刨花板密度为1.1 g/cm3时IB达到最大值3.54 MPa,24 h TS达到最小值3.99%。   相似文献   

9.
A new inverse trigonometric shear deformation theory is proposed for the static, buckling and free vibration analyses of isotropic and functionally graded (FG) sandwich plates. It accounts for a inverse trigonometric distribution of transverse shear stress and satisfies the traction free boundary conditions. Equations of motion obtained here are solved for three types of FG plates: FG plates, sandwich plates with FG core and sandwich plates with FG faces. Closed-form solutions are obtained to predict the deflections, stresses, critical buckling loads and natural frequencies of simply supported plates. A good agreement between the obtained predictions and the available solutions of existing shear deformation theories is found to demonstrate the accuracy of the proposed theory.  相似文献   

10.
This paper presents an experimental investigation into the flat-wise compression properties, strengthening mechanisms and failure modes of sandwich composite materials reinforced with orthogonal z-pins. The compression modulus of the sandwich composite increases rapidly with the volume content of z-pins due to their high longitudinal stiffness, however acoustic emission monitoring and X-ray computed tomography reveal that some z-pins are damaged during elastic loading. The compression stress to induce core crushing is increased greatly by z-pinning (up to nearly 700%), although a large percentage of the z-pins fail close to the elastic stress limit by longitudinal splitting and/or kinking. The total absorbed compressive strain energy of the sandwich composite is also improved greatly by z-pinning (more than 600%) due to the z-pins resisting core crushing, even though they are severely damaged. The results and observations presented in this paper have implications on the mechanical modelling of sandwich materials reinforced with brittle z-pins.  相似文献   

11.
In the present study, the effects of carbon fibers (CFs) on flame retardancy, smoke emission, thermal and mechanical properties of thermoplastic polyurethane (TPU)/ammonium polyphosphate (APP) are investigated. The cone calorimeter results show that the combination of 15.00 wt% APP + 5.00 wt% CF greatly lowered peak heat release rate, total heat release, and total smoke release, as well as increased char residue, which is due to a compact char layer formed on the ablating surface of TPU-4 composites, as shown by the SEM results. Smoke suppression properties investigated by smoke density test demonstrate that CF combined with APP greatly reduced the smoke emission. The TPU composite containing 5.00 wt% CF has the highest LOI value of all the intumescing composites studied. Meanwhile, the addition of CF also caused enhanced mechanical properties of TPU composites to a certain degree. Thermogravimetric (TG) analysis indicates that CF combined with APP enhanced the high-temperature thermal stability of TPU composites compared with the pristine TPU, due to the increase of the char residue. Thermogravimetric analysis/infrared spectrometry (TG–IR) results demonstrate that CF could catalyze the further decomposition of TPU composites and remarkably reduce the production of aromatic compounds as a smoke precursor, which are the major parts of smoke.  相似文献   

12.
The use of particles from agricultural lignocellulosic resources in concrete gives it desirable environmental and multiphysics qualities. In this study, parallels are drawn between particles derived from hemp and sunflower stems, in terms of their morphological and physical properties. A pumice-lime binder is proposed as an alternative to the traditional cement or lime based solutions for both environmentally friendly and mechanical qualities. Compaction is applied during casting and its effects on mechanical properties are analysed. A principal finding of this study is that the hemp and sunflower materials show large similarities in terms of morphology and mechanical performance of the resulting concrete. The pumice-lime binder provides desirable properties even with raw pumice sand, which represent 90% of the binder mass proportion. Compaction level during casting induces an orthotropy, even with low plant content, and increases the compressive strength. A simple analytical model using Powers’ equation is proposed to predict plant concrete compressive strength with low plant quantities.  相似文献   

13.
利用锥形量热仪(CONE)在35kW/m2热辐照条件下,并结合极限氧指数(LOI)和UL-94垂直燃烧测试方法对聚丙烯(PP)/聚醋酸乙烯酯(PVAc)-有机蒙脱土(OMMT)纳米复合材料和加入无卤复配阻燃剂制备的PP/PVAc-OMMT/氢氧化镁(MH)/三氧化二锑(AO)纳米复合阻燃材料的热释放速率、烟释放及材料在燃烧时的质量损失行为进行了研究。结果表明,添加10%(质量分数)PVAc-OMMT可以提高PP材料的阻燃性能,燃烧时的热释放速率、质量损失率以及烟释放量减少,且PVAc-OMMT与无卤复配阻燃剂之间可产生阻燃协效作用,使纳米复合阻燃材料的阻燃性能、热稳定性和抑烟性进一步增强。  相似文献   

14.
An exact three-dimensional (3D) piezothermoelasticity solution is presented for static, free vibration and steady state harmonic response of simply supported cross-ply piezoelectric (hybrid) laminated rectangular plates with interlaminar bonding imperfections. The bonding imperfection is modeled by considering the jump in the displacements, electric potential and temperature across the non-rigid interface proportional, respectively, to the associated tractions, transverse electric displacement and heat flux. The solution includes the case when electric potentials are prescribed at the interfaces for effective actuation. Numerical results are presented for hybrid composite and sandwich plates with varying imperfection compliance. The effect of location of imperfect bonding on the response is investigated for mechanical, electric potential and thermal load cases. The effect of weak bonding at elastic–piezoelectric interface on the actuation authority of the piezoelectric layer is also investigated. These results would serve as benchmark for assessing 2D plate theories incorporating interlaminar bonding imperfections.  相似文献   

15.
The span limits of two glass fiber-reinforced polymer (GFRP) bridge concepts involving GFRP-balsa sandwich plates are discussed. The sandwich plates were either used directly as slab bridges or as decks of a hybrid sandwich-steel girder bridges. In the latter case, the potential of the sandwich decks to replace reinforced concrete (RC) decks was also evaluated. Taking the limits of manufacturing into account (800 mm slab thickness), maximum bridge spans of approximately 19 m can be reached with FRP-balsa sandwich slab bridges, if a carbon-FRP (CFRP) arch is integrated into the balsa core. Above this limit, hybrid sandwich-steel girder bridges can be used up to spans of 30 m. RC deck replacement requires timber and steel plate inserts into the balsa core above the steel girders. GFRP-balsa sandwich slabs or decks exhibit full composite action between lower and upper face sheets. Stress concentrations occur at the joints between balsa core and timber inserts which however can effectively be reduced by changing from butt to scarf joints.  相似文献   

16.
The optimal design of laminated sandwich panels with viscoelastic core is addressed in this paper, with the objective of simultaneously minimizing weight and material cost and maximizing modal damping. The design variables are the number of layers in the laminated sandwich panel, the layer constituent materials and orientation angles and the viscoelastic layer thickness. The problem is solved using the Direct MultiSearch (DMS) solver for multiobjective optimization problems which does not use any derivatives of the objective functions. A finite element model for sandwich plates with transversely compressible viscoelastic core and anisotropic laminated face layers is used. Trade-off Pareto optimal fronts are obtained and the results are analyzed and discussed.  相似文献   

17.
提出了一种由齿板-玻璃纤维(TP-GF)混合面板和聚氨酯(PU)泡沫芯材组成的新型TP-GF/PU泡沫夹层梁,结构中金属板通过齿钉压入GF与内部芯材连接,该夹层梁采用真空导入模压工艺制作。通过低速冲击试验,研究了不同冲击能量、纤维厚度和泡沫密度下TP-GF/PU泡沫夹层梁的冲击响应和损伤模式,并与普通的夹层梁进行了对比分析;通过双悬臂梁试验研究了混合夹层梁的界面性能,计算了夹层梁的应变能释放率。结果表明:在22 J、33 J、44 J能量冲击下,泡沫芯材密度为150 kg/m3的TP-GF/PU泡沫夹层梁的最大接触力较普通夹层梁分别提高了31.2%、48.6%、33.3%,冲击能量吸收分别增加了17.2%、11.3%、15.5%;随着冲击能量、面板纤维层数及芯材密度的增加,TP-GF/PU泡沫夹层梁最大接触力增大,密度较低的TP-GF/PU泡沫夹层梁损伤形式主要为面板的局部弯曲,而芯材密度较高的TP-GF/PU泡沫夹层梁则以穿透损伤为主;增加泡沫芯材密度和面板纤维厚度能够提高TP-GF/PU泡沫夹层梁的抗冲击性能,随着芯材密度的增大TP-GF/PU泡沫夹层梁的应变能释放率峰值越高,界面性能越好。   相似文献   

18.
The objective of this study is the formulation of a natural polysaccharidic binder for the conception of an insulating bio-based composite made with sunflower stalk particles. The formulation was performed using chitosan cross-linked with Genipin and mixed with alginate, guar gum and starch. A fractional factorial experimental design within 32 essays was established to find the formulation leading to composites with the best combination between good mechanical properties and limited amount of chitosan in the binder. Composites with a thermal conductivity (κ) of 0.07 W m−1 K−1 and a maximum tensile stress (σmax) of 0.2 MPa were obtained with a total binder ratio of 5.5% (w/w). The results of this study show that the insulating bio-based composites evaluated have competitive mechanical and thermal performances compared with other eco-friendly insulating materials available on the market.  相似文献   

19.
Polymer's melt flow behavior has triggered great interest due to the mutual-enhancing loop effect between vertical polymer fire and the induced flowing pool fire. The aim of the study was to quantitatively investigate the effect of ignition conditions on the polymer's melt flow flammability. Polypropylene (PP) sheets with a thickness of 4mm were selected as the test samples. An experimental rig was designed to study the interaction between the vertical PP sheet fire and the corresponding pool fire. Ignition was achieved at three locations, i.e. the lower right corner, the lower middle edge, and the whole lower edge of the PP sheets. All tests were conducted in an ISO9705 fire test room. Heat release rate, smoke temperature and other common parameters in fire hazard analysis were measured with the help of the fire room facilities. Results indicated that ignition conditions evidently impact on heat release rate development, peak heat release rate, smoke temperature, smoke generation and smoke toxicity. Furthermore, these experimental results preliminarily demonstrated the feasibility of the designed setup in studying interaction between vertical polymer sheet fire and the induced pool fire, although further modification may be needed.  相似文献   

20.
以聚氨酯弹性体钢夹层板为研究对象,对黏弹性夹芯夹层结构三点弯曲实验卸载后裂纹会沿层间方向继续扩展这一现象进行研究。开展了不同硬度夹芯的双悬臂梁(Double Cantilever Beam,DCB)实验和单悬臂梁(SLB)实验,测得了临界应变能释放率。在假设裂纹张开角度在开裂过程中不变的前提下,推导了临界应变能释放率的计算公式。并计算了软夹芯试件和硬夹芯试件的临界破坏的裂纹长度。结果表明,虽然存有一定的局限性,但是裂纹张开角度能够描述黏弹性夹层结构的层间裂纹扩展,获得的结果能够描述聚氨酯弹性体钢夹层板的层间延迟破坏的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号