首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于倒频谱技术的滚动轴承故障诊断   总被引:2,自引:0,他引:2  
以数控机床为例,介绍倒频谱在滚动轴承故障诊断中的应用,通过监测轴承振动状态,采集振动信号波形,借助MATLAB对信号的强大处理功能,进行倒频谱分析,从而实现对设备的预诊断,避免突发性事故造成重大经济损失.  相似文献   

2.
根据滚动轴承振动信号的频域变化特征,采用小波包分析对其建立频域能量特征向量,利用径向基函数神经网络完成滚动轴承故障状态的识别.理论和试验证明了该方法的有效性和实用性.  相似文献   

3.
张超  秦敏敏  张少飞 《机床与液压》2022,50(16):169-173
在滚动轴承故障自动分类的研究中,使用传统的机器学习方法需要通过手动提取特征,因此特征的提取并不充分且自适应性不强。针对以上问题,提出一种一维卷积神经网络(1D CNN)结合XGBoost算法的单通道滚动轴承故障分类模型。该模型结合1D CNN和XGBoost的优势,对采集到的轴承振动信号进行数据集划分;使用训练集对1D CNN进行训练,把训练好的1D CNN模型进行保存并用来实现轴承数据特征的自动提取;将提取的特征数据集代入XGBoost算法中进行训练和分类。为验证所提模型的有效性,使用凯斯西储大学轴承数据中心提供的数据对1D CNN模型、XGBoost模型和1D CNN-XGBoost模型进行实验对比;为验证1D CNN-XGBoost的泛化性,使用一组新的滚动轴承数据集进行实验。结果表明:1D CNN-XGBoost模型的分类准确率更高,是一种有效的轴承故障分类模型,具有很好地分类性能和泛化性。  相似文献   

4.
滚动轴承工作环境恶劣、复杂,在采集信号的过程中,不可避免地会有噪声夹杂其中。为实现快速特征提取的同时提高识别率,提出一种基于主成分分析(PCA)降噪的卷积神经网络(CNN)故障诊断方法。该方法引入PCA对信号进行降噪预处理,再将处理后的信号转换成二维特征图像,输入CNN模型以提取转换后的图像特征,进行故障模式识别与分类。利用凯斯西储大学滚动轴承数据集进行故障诊断试验,结果表明:所提方法具有可行性与有效性,且满足鲁棒性和实时性的应用要求。  相似文献   

5.
为了提高民航发动机滚动轴承故障诊断正确率,提出基于改进天牛须搜索算法优化Elman神经网络的诊断模型。针对天牛须搜索算法易早熟等缺陷,对天牛质心位置和步长更新操作进行改进,并用改进算法优化Elman网络的学习率、权重和阈值。使用IBAS-Elman模型对滚动轴承故障和正常状态进行诊断,并分析Elman网络延迟向量比例因子对滚动轴承故障诊断率的影响。为了验证IBAS-Elman模型的有效性,将天牛须搜索算法、萤火虫算法和遗传算法作为对比算法。实验结果表明:改进天牛须搜索算法收敛精度优于对比算法。  相似文献   

6.
陈维兴  孙习习  王涛 《机床与液压》2020,48(12):147-154
针对传统的滚动轴承故障诊断方法难以提取轴承振动数据有效特征的缺陷,提出一种基于平滑伪Wigner-Vill分布(smooth and pseudo Wigner-Ville distribution,SPWVD)和卷积神经网络(convolutional neural network,CNN)的网络模型SPWVD-CNN。对振动数据进行平滑伪Wigner-Vill分布变换,将获得的时频图进行压缩,作为CNN的输入,利用迁移学习的思想进行网络训练,使得模型对于不同负载的数据具有良好的诊断性能,提高了网络的泛化能力。实验结果表明:SPWVD-CNN对轴承故障数据的平均分类准确率提升至99.27%,总体性能优于使用单一的CNN和其他传统的故障诊断方法。  相似文献   

7.
列车滚动轴承故障诊断   总被引:5,自引:0,他引:5  
利用脉冲共振解调振动测试技术研制了一套滚动轴承故障诊断系统.该系统可有效地对197726型滚动轴承进行故障诊断,并已在铁路现场实测应用.文中给出了一些实验检测结果.  相似文献   

8.
针对滚动轴承振动信号典型非平稳性、非线性的特点,提出一种基于小波变换(WT)和一维卷积神经网络(1DCNN)的轴承故障诊断多尺度卷积神经网络方法。通过小波变换对信号进行多尺度分解,然后对每个尺度成分进行重构,将重构后的信号进行傅里叶变换得到频谱表示,并将各尺度幅值数据构造成一维特征向量作为一维卷积神经网络的输入。最后利用一维卷积神经网络对输入数据进行特征学习,得到轴承故障诊断模型。利用滚动轴承的10个状态数据集验证其性能。结果表明:该方法可以避免人工提取特征,获得99.94%的诊断准确率。  相似文献   

9.
徐活耀  陈里里 《机床与液压》2020,48(14):190-194
针对提取有效滚动轴承特征和消除特征之间的冗余,提出一种基于堆栈稀疏自编码器和Softmax层构建的深度神经网络(DNN)用于轴承故障诊断。首先从振动信号提取12个统计特征和6个时频域特征,然后将获得的特征用于构建18维特征向量;高维特征向量通过堆栈稀疏自编码器逐层贪婪学习获得无冗余的高级特征;最后将高级特征输入Softmax分类层进行轴承故障诊断。实验结果表明:相比于传统BP和SVM分类器,DNN能更准确地识别滚动轴承故障类型。  相似文献   

10.
针对滚动轴承故障振动信号的非线性和非平稳特征,提出了一种自适应的一维卷积神经网络(1-Dimensional Convolutional Neutral Networks,1-DCNN)和长短期记忆网络(Long Short-Term Memory,LSTM)融合的轴承故障诊断方法。首先,将原始一维振动信号通过有重叠取样的方式分别输入1-DCNN和LSTM两个通道,然后通过Concatenate层进行空间和时间维度上特征信息的融合,最后,通过Softmax分类器进行故障类别的分类输出。该方法可以直接从原始振动信号中自适应提取特征,实现了"端到端"的故障诊断。采用CTU-2实验平台故障数据,通过对滚动轴承的不同故障类型、不同传感器采集方位、不同故障直径进行实验分析,结果表明:该方法在识别轴承故障类别上与其他方法相比具有更高的识别精度,并具有良好的有效性和稳定性。  相似文献   

11.
田栋  曹中清  范旭 《机床与液压》2018,46(19):173-176
提出一种基于风驱动优化BP神经网络的滚动轴承故障诊断方法。把BP神经网络权值和阈值作为优化参数,利用风驱动算法对其进行优化,提高了神经网络的训练效率和准确率。对滚动轴承的振动信号进行处理,提取其时域特征、频域特征、FFT谱特征、功率谱特征、小波包络谱特征作为轴承的故障特征。经测试,优化算法的诊断结果正确,减小了BP网络的训练误差和测试误差,验证了风驱动优化BP神经网络用于滚动轴承故障诊断的有效性和实用性。  相似文献   

12.
针对故障诊断过程中滚动轴承型号复杂、种类繁多,生产厂商各异的情况,利用Powerbuilder这一强大的数据库开发工具,设计出可广泛应用于设备状态监测、故障诊断和预知维修领域的滚动轴承数据库系统,并以实例说明了该数据库系统在故障诊断中的作用。  相似文献   

13.
俞昆  谭继文  战红  孙显彬 《机床与液压》2016,44(23):156-159
针对现有滚动轴承故障诊断技术中,存在输入属性冗余过多、故障识别率不高等缺点,提出了基于改进邻域粗糙集与S_Kohonen神经网络的故障诊断方法。由于传感器采集的故障信息大多为数值型数据且数据维数较大,文中引入邻域粗糙集理论并对基于邻域粗糙集的经典前向贪心算法进行改进,利用改进算法约简故障数据,大大减小了算法复杂度;对Kohonen神经网络进行改进,在其原有结构基础上添加输出层构成S_Kohonen神经网络,使其输出类别满足给定分类要求;分别采用前向贪心算法、改进算法约简故障数据,将约简前、后的故障数据分别输入S_Kohonen神经网络、BP神经网络识别滚动轴承故障状态,试验结果证明邻域粗糙集可有效消除属性之间的重复信息,改进算法提取故障属性信息更能反映故障状态的本质,S_Kohonen神经网络具有良好的故障识别能力,两者配合使用,改进邻域粗糙集——S_Kohonen神经网络模型具有很好的故障诊断能力。  相似文献   

14.
针对传统的滚动轴承故障诊断方法难以提取轴承振动数据有效特征的缺陷,提出一种基于平滑伪Wigner-Vill分布(smooth and pseudo Wigner-Ville distribution,SPWVD)和卷积神经网络(convolutional neural network,CNN)的网络模型SPWVD-CNN。对振动数据进行平滑伪Wigner-Vill分布变换,将获得的时频图进行压缩,作为CNN的输入,利用迁移学习的思想进行网络训练,使得模型对于不同负载的数据具有良好的诊断性能,提高了网络的泛化能力。实验结果表明:SPWVD-CNN对轴承故障数据的平均分类准确率提升至99. 27%,总体性能优于使用单一的CNN和其他传统的故障诊断方法。  相似文献   

15.
为了解决滚动轴承故障特征难以提取的问题,提出了一种奇异谱分解(SSD)和多尺度排列熵(MPE)的故障特征提取方法,结合K近邻(KNN)算法识别滚动轴承故障类型。首先对滚动轴承振动信号用SSD进行分解,得到3个奇异谱分量(SSC),根据峭度最大原则选择主分析分量;然后用MPE计算主分析分量的熵值,实现滚动轴承的故障特征进行提取;最后将熵值作为特征向量输入KNN分类器中,完成滚动轴承的状态识别。将该方法应用于实验数据分析,并与VMD和MPE相结合的故障诊断方法做比较,结果证明,该方法能够有效地提取故障特征,实现故障诊断。  相似文献   

16.
基于非欧几里德空间的数据包含着数据点以及数据点之间的关系信息,而基于深度学习模型的故障诊断方法通常忽略了数据点之间的关系信息。对此,通过结合可视图算法和图卷积网络,将基于非欧几里德空间的不规则数据应用到轴承故障诊断领域。首先,将原始信号利用可视图算法转换为图数据,以图数据显示时域特征,极大丰富了输入信息;其次,利用构建的图卷积网络对故障特征进行学习,以达到故障诊断的目的。实验结果表明,图卷积网络在单一轴承故障分类任务上能够达到97%以上的准确率,这表明利用可视图算法提取的关系信息对轴承故障的识别具有重要作用。  相似文献   

17.
针对滚动轴承故障诊断中单一网络模型的不确定问题,并考虑到声信号非接触式测量的优势,提出一种多卷积神经网络(CNN)模型融合的滚动轴承声学故障诊断方法,采用多通道传声器信号对每一个CNN进行训练,然后采用Blending模型融合方法将多CNN模型进行融合,实现更精确、更可靠的故障诊断.通过半消声室内滚动轴承实验台的传声器...  相似文献   

18.
徐行  李军星  贾现召  邱明 《机床与液压》2024,52(11):211-218
针对滚动轴承早期故障诊断时时频域特征选取主观性强、时序特征信息利用不足等问题,提出一种基于卷积神经网络和双向长短时记忆神经网络的滚动轴承早期故障诊断方法。采用卷积神经网络提取原始振动信号特征,并在卷积层后引入批正则化层,以消除数据的不规则性对权重优化的影响,并通过扩展首层卷积层和调整步长以提高特征提取效率。引入双向长短时记忆神经网络提升卷积神经网络对时序特征的提取能力,通过批正则化层和Dropout层增强模型的鲁棒性和减少神经元与神经元之间的依赖关系。最后,通过滚动轴承试验数据对文中方法进行验证。结果表明:与传统方法相比,文中方法不仅训练速度更快,而且故障诊断准确率也大幅提高。  相似文献   

19.
为了解决轴承故障特征提取中经验模态分解(EMD)出现的模态混叠现象,提出一种集合经验模态分解(EEMD)、快速谱峭度选频和共振解调技术相结合的滚动轴承故障诊断方法。对原始振动信号进行EEMD处理,分解为多个本征模态函数(IMF);将符合峭度准则的IMF分量筛选出来,对其进行信号重构,对重构信号进行快速谱峭度计算得出快速谱峭度图,从图中选出最优频带中心和带宽,确定FIR带通滤波器设计参数;最后通过共振解调技术对滤波信号进行包络分析,得出包络谱确定滚动轴承故障特征信息。通过滚动轴承实验分析,验证了此方法的可行性。  相似文献   

20.
针对滚动轴承故障诊断过程中,难以提取细微故障特征的问题,文章提出一种基于改进卷积神经网络的滚动轴承故障诊断方法。该方法首先在特征值提取过程中,采用了多尺度卷积核并联的方式,对滚动轴承振动信号提取了更多的故障特征细节;然后在特征值降维、去噪处理过程中,采用了leaky_relu激活函数,解决了部分神经元处于抑制状态的问题;最后在分类识别过程中,针对多层全连接计算复杂的问题,采用了全局平均池化代替部分全连接。通过滚动轴承不同损伤程度、不同故障位置的诊断实验,证明了所提方法能够提高故障识别率、降低训练时间、具有较好的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号