首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Ammonia (NH3) volatilization is an important mechanism for nitrogen (N) loss from flooded rice fields following the application of urea into the floodwater. One method of reducing losses is to use a urease inhibitor that retards the hydrolysis of urea by soil urease and allows the urea to diffuse deeper into the soil. The two chemicals that have shown most promise in laboratory and greenhouse studies are phenylphosphorodiamidate [PPD] and N-(n-butyl)thiophosphorictriamide [NBPT], but they seldom work effectively in the field. PPD decomposes rapidly when the pH departs from neutrality, and NBPT must be converted to the oxygen analogue [N-(n-butyl)phosphorictriamide, NBPTO] for it to be effective. Our field studies in Thailand showed that NH3 loss is markedly reduced when PPD is added with the algicide terbutryn. The studies also showed that a mixture of PPD and NBPT was even more effective than either PPD or NBPT alone. It appears that initially PPD inhibited urease activity, and during this time at least part of the NBPT was converted to NBPTO; then as the activity of PPD declined, NBPTO inhibited the hydrolysis of urea. The combined urease inhibitor treatment reduced NH3 loss from 15 to 3% of the applied N, and increased grain yield from 3.6 to 4.1 t ha–1.  相似文献   

2.
Urease activity and inhibition in flooded soil systems   总被引:8,自引:0,他引:8  
Ammonia volatilization is an important mechanism of N loss from flooded rice soils. Inhibition of urease may delay the formation of conditions favorable to NH3 volatilization in the floodwater, thus giving the soil and plant a better chance to compete with the atmosphere as a sink for N. The experiments reported here were designed to identify the site of urea hydrolysis in flooded soils and to attempt selective urease inhibition with some of the inhibitors reported in the literature.Studies with three flooded soils using15N-labeled urea showed that 50–60% of the urea was found in the floodwater, despite incorporation. This floodwater urea is hydrolyzed largely at the soil—floodwater interface and subsequently returns to the floodwater (> 80%) or is retained by the soil (< 20%). Of the following urease inhibitors (K-ethyl-xanthate; 3 amino-1-H-1, 2, 4-triazole; phenylphosphorodiamidate) added at 2% (w/w of urea), only the latter was able to delay the appearance of NH3 (aq) in the flood-water and thus delay NH3 volatilization. Use of an algicide addition to the floodwater depressed NH3 (aq) levels during the entire period studied, but in the presence of PPD the algicide had little additional effect.  相似文献   

3.
Poor N fertilizer use efficiency by flooded rice is caused by gaseous losses of N. Improved fertilizer management and use of nitrification inhibitors may reduce N losses. A microplot study using15N-labelled urea was conducted to investigate the effects of fertilizer application method (urea broadcast, incorporated, deep-placed) and nitrification inhibitor [encapsulated calcium carbide (ECC)] treatments on emission of N2+N20 and total loss of applied N on a grey clay near Griffith, NSW, Australia. Both incorporation and deep placement of urea decreased N2+N2O emission compared to urea broadcast into the floodwater. Addition of ECC significantly (P < 0.05) reduced emission of N2+N20 from incorporated or deep-placed urea and resulted in increased exchangeable ammonium concentrations in the soil in both treatments. Fifty percent of the applied N was lost when urea was broadcast into the floodwater. Total N loss from the applied N was significantly (P < 0.05) reduced when urea was either incorporated or deep placed. In the presence of ECC the losses were reduced further and the lowest loss (34.2% of the applied N) was noted when urea was deep-placed with ECC.  相似文献   

4.
A field experiment was conducted on an acid sulfate soil in Thailand to determine the effect of N fertilization practices on the fate of fertilizer-N and yield of lowland rice (Oryza sativa L.). A delayed broadcast application of ammonium phosphate sulfate (16-20-0) or urea was compared with basal incorporation of urea, deep placement of urea as urea supergranules (USG), and amendment of urea with a urease inhibitor. Deep placement of urea as USG significantly reduced floodwater urea- and ammoniacal-N concentrations following N application but did not reduce N loss, as determined from an15N balance, in this experiment where runoff loss was prevented. The urease inhibitor, phenyl phosphorodiamidate (PPD), had little effect on floodwater urea- and ammoniacal-N, and it did not reduce N loss. The floodwater pH never exceeded 4.5 in the 7 days following the first N applications, and application of 16-20-0 reduced floodwater pH by 0.1 to 0.3 units below the no-N control. The low floodwater pH indicated that ammonia volatilization was unimportant for all the N fertilization practices. Floodwater ammoniacal-N concentrations following application of urea or 16-20-0 were greater on this Sulfic Tropaquept than on an Andaqueptic Haplaquoll with near neutral pH and alkaline floodwater. The prolonged, high floodwater N concentrations on this Sulfic Tropaquept suggested that runoff loss of applied N might be a potentially serious problem when heavy rainfall or poor water control follow N fertilization. The unaccounted-for15N in the15N balances, which presumably represented gaseous N losses, ranged from 20 to 26% of the applied N and was unaffected by urea fertilization practice. Grain yield and N uptake were significantly increased with applied N, but grain yield was not significantly affected by urea fertilization practice. Yield was significantly lower (P = 0.05) for 16-20-0 than for urea; however, this difference in yield might be due to later application of P and hence delayed availability of P in the 16-20-0 treatment.  相似文献   

5.
This paper describes field experiments designed to evaluate the effectiveness of several nitrification inhibitors to prevent loss of fertilizer nitrogen (N) applied to cotton. The usefulness of nitrapyrin, acetylene (provided by wax-coated calcium carbide), phenylacetylene and 2-ethynylpyridine to prevent denitrification was evaluated by determining the recovery of N applied as15N labelled urea to a heavy clay soil in 1 m × 0.5 m microplots in north western N.S.W., Australia. In a second experiment, the effect of wax-coated calcium carbide on lint yield of cotton supplied with five N levels was determined on 12.5 m × 8 m plots at the same site.The15N balance study showed that in the absence of nitrification inhibitors only 57% of the applied N was recovered in the plants and soil at crop maturity. The recovery was increased (p < 0.05) to 70% by addition of phenylacetylene, to 74% by nitrapyrin, to 78% by coated calcium carbide and to 92% by 2-ethynylpyridine.In the larger scale field experiment, addition of the wax-coated calcium carbide significantly slowed the rate of NH 4 + oxidation in the grey clay for approximately 8 weeks. Lint yield was increased (p < 0.05) by the addition of the inhibitor at all except the highest level of N addition. The inhibitor helped to conserve the indigenous N as well as the applied N.The research shows that the effectiveness of urea fertilizer for cotton grown on the heavy clay soils of N.S.W. can be markedly improved by using acetylenic compounds as nitrification inhibitors.  相似文献   

6.
Effect of algicides on urea fertilizer efficiency in transplanted rice   总被引:1,自引:0,他引:1  
The effects of the algicides terbutryn and copper sulfate on the potential for reducing the gaseous loss of NH3 from urea applied to rice were examined in experiments with 2 methods of N fertilizer management, 2 or 3 N rates, and 3 algicide treatments. The experiments were conducted during the 1986 dry and wet seasons in an experimental field at Pila, Laguna, Philippines.Copper sulfate had little effect as an algicide at the rate used, but terbutryn immediately reduced algal growth. The populations of species resistant to terbutryn probably increased, but terbutryn had no long-term effect on the total number of colony-forming units of algae. There was some evidence that terbutryn reduced photodependent N2 fixation as estimated by acetylene reduction assay.Terbutryn, when applied with urea 10 days after transplanting, reduced the maximum floodwater pH by 0.9 units or more for 7 d in the DS and by about 0.5 units for 8 d in the WS. Terbutryn increased the ammoniacal-N (AN) concentration in the floodwater 100% or more in the DS and 60% in the WS. The combined effect of terbutryn on the floodwater pH and AN concentration was reduced photodependent NH3 partial pressure (NH3), about 25% in the DS and 38% in the WS. deceased  相似文献   

7.
Nitrification rates (n) in the floodwater of an alkaline clay were measured in the absence or presence of rice plants by inhibition of ammonium oxidation and 15N-dilution techniques. Floodwater nitrate concentrations in control treatments showed a marked diurnal variation, and were higher than in the inhibitor treatments after the first day. Ammonium concentrations in floodwater declined exponentially in all treatments, being markedly affected by diffusion and NH3 volatilization but little affected by nitrification and plant uptake. Nitrification rates in floodwater estimated by 15N-dilution were generally higher than the rates estimated by the inhibitor method. Estimates of n were generally higher during daylight hours than at night, and did not differ significantly between planted and unplanted pots. Microbial immobilisation of labelled ammonium and gross N immobilisation were not affected by addition of the nitrification inhibitor 2-ethynylpyridine.  相似文献   

8.
Pyrethrum (Chrysanthemum cinerariefolium) flowers have been observed to have insecticidal properties and could be used as an indigenous nitrification inhibitor for increasing N-use efficiency. A field experiment was conducted at the Central Institute of Medicinal and Aromatic Plants, Lucknow, India during 1988 and 1989 to evaluate the relative performance of pyrethrum flower waste and Dicyandiamide (DCD) as nitrification inhibitors applied with prilled urea (PU) to Japanese mint (Mentha arvensis L.). The results revealed that application of the nitrification inhibitors with prilled urea significantly increased the herb and essential oil yield of the crop compared to that of prilled urea alone. Addition of Dicyandiamide and pyrethrum flower waste gave 30 and 23% more herb yield than prilled urea alone, the corresponding increase in oil yield being 27 and 22%, respectively. Application of nitrogen at 200 kg ha–1 in dicayndiamide or pyrethrum flower waste treated soil significantly enhanced the herb and essential oil yields and N-uptake by the crop to more than that for 300 kg N ha–1 with prilled urea. Both the materials improved the N use efficiency by one and half time as compared to that with PU at 100 kg N ha–1. The results indicate pyrethrum flower dust can be effectively used as a potential nitrification inhibitor.  相似文献   

9.
In experiments with transplanted rice (Oryza sativa L.) at the Central Soil Salinity Research Institute, Karnal, India, two methods of application of granular urea, wholly as basal dose U(W) or in splits U(S) were compared with deep, point placement (8 cm) of urea supergranules and broadcast application of two slow-release sources, sulphur-coated urea (SCU) and lac-coated urea (LCU). Comparisons were made in wet season 1984 and 1985 on the basis of ammoniacal N concentration and pH of floodwater, ammonia volatilization, rice yield and N uptake.In 1984 the highest peak concentrations of ammoniacal N (AN) in the floodwater, > 12g m–3, and ammonia volatilization losses 54% of applied N were produced in U(W). Application of N in splits U(S) reduced peak AN levels 5g m–3 and losses to 45.1%. LCU was ineffective in reducing peak AN levels ( 7.5g m–3) or losses (43.6%). However SCU and USG were effective in reducing peak AN levels to < 2g m–3 and N losses to 16.9 and 3.4% respectively. Total ammonia volatilization losses as well as the initial rate of loss correlated very well with the peak levels (second day) of AN, NH3 (aq.) as well as equilibrium vapour pressure of NH3. Floodwater pH was between 9.5 and 10.0.Split application of granular urea was generally more efficient in terms of yield and N recovery (41.4%, average of two years) as compared to whole application (29.5%). LCU was ineffective in improving grain yields or N recovery (30.9%). SCU was ineffective in improving grain yields but improved N recovery to 57.9%., USG increased grain yields only in first year by 19% over U(S) and improved N uptake to 60.5%. A negative linear relationship was established between N uptake by rice at harvest and AN levels in floodwater two days after fertilization which can be used as an index to evaluate fertilizers.  相似文献   

10.
Thorough incorporation of urea into the soil is known to reduce the high N losses associated with the traditional practice of broadcasting urea onto puddled lowland rice fields. Few studies have, however, examined the effectiveness of farm-level implements for incorporating broadcast urea during final land preparation in small rice fields. A field experiment was conducted at two sites in the Philippines to compare the effectiveness of several commonly available and experimental tillage implements for basal incorporation of urea. The relative effectiveness of N incorporation and relative susceptibility of N to ammonia volatilization losses were assessed from floodwater (urea + ammoniacal)-N and partial pressure of ammonia (pNH3) following urea application to puddled, unplanted soil.Conventional water buffalo- and single axle tractor-drawn comb harrows were equally, but only partially, effective in reducing floodwater (urea + ammoniacal)-N andpNH3 by 42 to 56% of the values for broadcast prilled urea (PU) without incorporation. Removal of the comb harrow from the single axle tractor did not reduce the effectiveness of PU incorporation, indicating that the cagewheel rather than the comb harrow was largely responsible for fertilizer incorporation. An experimental conical puddler was slightly more effective than the conventional comb harrow. The movement of transplanters through the field did not effectively incorporate PU. A power weeder, frequently used by researchers to incorporate fertilizer in small experimental plots, was less effective than traditional comb harrows, reducing floodwater (urea + ammoniacal)-N by only 35%. No tillage implement for incorporating urea reducedpNH3 as effectively as did the liquid urea band injector.Results suggest that sizeable losses of fertilizer N still occur following incorporation of PU with tillage implements commonly used by small rice farmers. Considerable scope remains for the improvement of fertilizer incorporation in puddled rice soils.  相似文献   

11.
Nitrification inhibitors such a dicyandiamide (DCD) help to reduce leaching losses by retaining applied N in the ammoniacal form. Research objectives were to evaluate dicyandiamide added to ammonium sulphate-nitrate (ASN) as a nitrification inhibitor in cultivated soils (Xeropsamments) and its effect on N uptake by citrus (Citrus sinensis (L.) Osbeck). Under field conditions, fertilization of adult trees with ASN (600 g N tree–1) either with or without DCD (2% DCD-N) was compared (ASN+DCD and ASN, respectively). The NH 4 + -N concentrations in plots fertilized with ASN+DCD were significantly higher than ASN plot in the 0-15 cm layer during 5–105 day period. Nitrification started immediately after N application in both treatments (ASN and ASN+DCD). In all three soil layers analyzed, NO 3-N concentrations were higher in the ASN plots than in the ASN+DCD during the first 20 days. This indicates that nitrification of NH+ 4 from ASN was more rapid in the absence of DCD. On the other hand, fertilization with ASN+DCD kept higher levels of NO 3-N in soils than ASN during the rest of experience period (40–160 days). Addition of DCD to ASN showed a higher N concentration in the spring-flush leaves with respect to the trees fertilized with ASN, during the growth cycle. These results suggest that the use of a nitrification inhibitor permitted a more efficient utilization of fertilizer N by citrus trees. The plants treated with DCD added to ASN showed a higher yield in number of units per tree and a better fruit colour index than those treated with ASN alone.  相似文献   

12.
Incorporation of urea into puddled rice soils is known to reduce ammoniacal-N buildup in floodwater and the subsequent loss of N as ammonia. Little is known, however, about seasonal and temperature effects on the effectiveness of basal urea incorporation in puddled soils. A field experiment was conducted in northern Vietnam on an Aquic Ustifluvent in the spring season (February to June) and summer season (July to November) to determine the effect of the presence of floodwater and method of fertilizer incorporation on floodwater ammoniacal-N, floodwater urea-N, andpNH3 following urea application. During the 4 d following basal urea application, floodwater temperature at 1400 h was 7 to 15°C higher in summer (July) than that in spring (February), and floodwater pH at 1400 h was 0.5 to 1.0 higher in summer than that in spring. ThepNH3 was much higher in summer than that in spring, suggesting a high potential for ammonia volatilization in summer. The movement of transplanters through the field did not reducepNH3, irrespective of floodwater depth (0 or 5 cm) and season. Harrowing and subsequent transplanter movement partially reducedpNH3 in the summer;pNH3 reduction, however, was greater when floodwater depth was 0 rather than 5 cm during harrowing and transplanting. This partial reduction ofpNH3 in summer did not result in a corresponding increase in rice yield, presumably because N losses were only slightly reduced and because yield was constrained by additional factors, such as the adverse climate. In spring, the removal of floodwater before urea application and incorporation increased grain yield by 0.2 Mg ha–1, even thoughpNH3 was consistently low and was not reduced by urea incorporation. This result suggests that water management and tillage during basal urea application may influence rice growth and yield in ways other than reduced N loss.  相似文献   

13.
When urea or ammoniacal-N fertilizers are applied to the floodwater of a rice crop, fertilizer use efficiency is often reduced because there are substantial losses of NH3 by volatilization. As pH rises the potential loss increases exponentially due to the increasing dominance of volatile NH3 gas in equilibrium with NH 4 + . We postulate that the daytime pH rise is caused mainly by photosynthesis of algae and Cyanobacteria, and that addition of a suitable photosynthetic inhibitor, concurrently with fertilizer, should suppress the pH rise, thus conserving N in the form of the non-volatile NH 4 + . We selected terbutryne (2-(tert-butylamino)-4-(ethylamino)-6-(methylthio)-s-triazine) as the most promising inhibitor. In rice floodwater fertilized with urea the addition of terbutryne dampened the diurnal fluctuation in pH for 6 days and significantly increased the ammoniacal-N (AN) concentration measured in the floodwater. The concentration of ammonia gas in the air in equilibrium with the water, 0, which is proportional to the gaseous flux of NH3 at a given wind speed, was substantially reduced by terbutryne addition. Maximum values were reduced by over 50%. Terbutryne reduced the calculated cumulative NH3 emission by 43%, relative to the fertilizer (N + P) control. Terbutryne also suppressed photosynthetic oxygen production. Therefore, it may reduce N fertilizer losses by inhibiting nitrification, an aerobic process, so retarding subsequent denitrification losses of gaseous nitrogen and nitrogen oxides.Part of the supporting documentation for Fertilization of Crops. International Patent Application PCT/AU86/00093 filed 11 April 1986.  相似文献   

14.
Rice is a very responsive crop to nitrogen, but the efficiency of the N-fertilizer is low. Greenhouse experiment has been conducted to evaluate several methods to improve fertilizer efficiency and reduce N-losses in rice fields. N-15 labelled urea was applied to 10 kg soils in pots, urea was applied alone, addition of two urease inhibitors N-(n-butyle) thiosphosphoric triamide (NBPT) and hydroquinone (HQ), with addition of nitrification inhibitor Dicyandimide (DCD), or with the combination of both inhibitors. The fertilizer was applied either broadcast on soil surface or at depth of 8 cm below the surface. At maturity, plants were separated into grain and straw, dried and weighted. Soil and plant samples were analyzed for total N and N-15 excess. Both fertilizer placement and inhibitor application significantly increased straw and grain yield, as well as N- uptake. Nitrogen derived from fertilizer (% Ndff) was more than doubled, when urea was applied deep and in combination with inhibitors. Total plant recovery of N-15 labelled urea ranged from 17% to 75% according to treatment. Regardless of inhibitors application, plant recovery was increased from 39% to 65% when urea was applied at depth of 8 cm. Approximately, 2/3 of the applied urea (64%) was lost, when urea was applied alone. Those losses were reduced down to 12% with deep placement and inhibitor application. The two management practices show significant effect on minimizing N-losses and increasing plant recovery.  相似文献   

15.
Recent developments on the use of urease inhibitors in the tropics   总被引:1,自引:0,他引:1  
Urea has become the most widely used form of N fertilizer in the world, particularly in the tropics. Its efficiency, however, is decreased by losses of N through ammonia volatilization when the urea is not incorporated into the soil. High temperatures and high biological activity at the soil surface promote rapid hydrolysis of urea to ammonia and carbonate species by the soil enzyme urease, leading to large ammonia losses. These conditions have generated interest in materials that can inhibit the urease enzyme, slowing urea hydrolysis and allowing the urea to move away from the soil surface to where it is not as susceptible to ammonia loss. The phosphoryl di- and triamides, which are structural analogs of urea, meet the requirements for effective soil urease inhibition to varying degrees depending on the conditions of their use. Until the discovery of these compounds, there was little hope that urease inhibition could be achieved either economically or in an environmentally acceptable way. Included in this group is N-(n-butyl) thiophosphoric triamide (NBTPT), which is that most widely tested proinhibitor or precursor of the actual inhibitor N-(n-butyl) phosphoric triamide. Recent research in tropical rice systems indicates that urease inhibitors such as N-(n-butyl) phosphoric triamide and cyclohexylphosphoric triamide can play an important role in increasing urea efficiency. In some experiments where urease inhibition was only partially successful, better results were obtained when the phosphoroamides were used in conjunction with an algicide, to restrict ammonia loss, and nitrification inhibitors, to reduce loss of N by denitrification. Further research on tropical soils in different environments is required to determine the most suitable combination of inhibitors to reduce N loss and increase the efficiency of fertilizer N use.  相似文献   

16.
Recent research on problems in the use of urea as a nitrogen fertilizer   总被引:3,自引:0,他引:3  
Recent research on the NH3 volatilization, NO 2 - accumulation, and phytotoxicity problems encountered in the use of urea fertilizer is reviewed. This research has shown that the adverse effects of urea fertilizers on seed germination and seedling growth in soil are due to NH3 produced through hydrolysis of urea by soil urease and can be eliminated by addition of a urease inhibitor to these fertilizers. It also has shown that the leaf burn commonly observed after foliar fertilization of soybean with urea results from accumulation of toxic amounts of urea in soybean leaves rather than formation of toxic amounts of NH3 through hydrolysis of urea by leaf urease. It further showed that this leaf burn is accordingly increased rather than decreased by addition of a urease inhibitor to the urea fertilizer applied. N-(n-butyl)thiophosphoric triamide (NBPT) is the most effective compound currently available for retarding hydrolysis of urea fertilizer in soil, decreasing NH3 volatilization and NO 2 - accumulation in soils treated with urea, and eliminating the adverse effects of urea fertilizer on seed germination and seedling growth in soil. NBPT is a poor inhibitor of plant or microbial urease, but it decomposes quite rapidly in soil with formation of its oxon analog N-(n-butyl) phosphoric triamide, which is a potent inhibitor of urease activity. It is not as effective as phenylphosphorodiamidate (PPD) for retarding urea hydrolysis and ammonia volatilization in soils under waterlogged conditions, presumably because these conditions retard formation of its oxon analog. PPD is a potent inhibitor of urease activity but it decomposes quite rapidly in soils with formation of phenol, which is a relatively weak inhibitor of urease activity. Recent studies of the effects of pesticides on transformations of urea N in soil indicate that fungicides have greater potential than herbicides or insecticides for retarding hydrolysis of urea and nitrification of urea N in soil.  相似文献   

17.
The effect of phenyl phosphorodiamidate (PPD) on floodwater properties, N uptake,15N recovery, and grain yield of wetland rice (Oryza sativa L.) was evaluated in a series of field studies conducted at Muñoz and Los Baños, Philippines. Prilled urea and PPD-amended urea were applied to soil and incorporated immediately prior to transplanting or applied to floodwater after transplanting. Urea was also deep-placed or added in a coated form in two studies.The addition of PPD with urea retarded urea hydrolysis by 1–3 days, depending on the time and method of application. Significant reductions in the concentration of ammoniacal-N in floodwater resulted when PPD-amended urea was applied between 18 and 26 days after transplanting (DT). In contrast, PPD did not appreciably affect the concentration of ammoniacal-N in floodwater when applied with urea either immediately before or after transplanting of the seedlings.Plant N uptake and grain yield were not significantly affected by the addition of PPD with urea in three of the four experiments conducted, even though PPD substantially reduced the concentration of ammoniacal-N in the floodwater in several treatments in these studies. The15N balance studies conducted at both field locations showed PPD to increase total15N recovery by between 10% and 14% of the15N applied, 14 days after the application of urea. No further loss of15N occurred between the initial sampling (40 DT) and grain harvest at Los Baños. An increase in15N recovery occurred at grain harvest at Muñoz because15N-labeled urea was applied at 50 DT in the study. PPD increased the amount of15N in the plant and nonexchangeable soil N fraction at all harvests at Los Baños. In contrast, at Muñoz, PPD increased the quantity of15N in the KCL-extractable pool 14 days after urea was applied. Reasons for the discrepancies in results between experiments and the overall failure of PPD to increase grain yield are discussed.  相似文献   

18.
This paper reports a study on the distribution of dinitrogen between the atmosphere, floodwater and porewater of the soil in a flooded rice field after addition of15N-labelled urea into the floodwater.Microplots (0.086 m2) were established in a rice field near Griffith, N.S.W., and labelled urea (80 kg N ha–1 containing 79.25 atoms %15N) was added to the floodwater when the rice was at the panicle initiation stage. Emission of nitrous oxide and dinitrogen was measured directly during the day and overnight, using a cover collection method and gas chromatographic and mass spectrometric analytical methods. Ammonia volatilization was calculated with a bulk aerodynamic method from measurements of wind speed and floodwater pH, temperature and ammoniacal nitrogen concentration. Seven days after urea application the15N2 content of the floodwater and soil porewater was determined and total fertilizer nitrogen loss was calculated from an isotopic balance.Throughout the experimental period gas fluxes were low; nitrous oxide, ammonia and dinitrogen flux densities were less than 5, 170 and 720 g N ha–1 d–1, respectively. The greatest dinitrogen flux density was observed two days after urea addition and this declined to ~ 100 g ha–1 d–1 after seven days.The data indicate that, of the urea nitrogen added, 0.02% was lost to the atmosphere as nitrous oxide, 0.9% was lost by ammonia volatilization, and 3.6% was lost as dinitrogen gas during the 7 days of measurement. At the end of this period 0.028% and 0.002% of the added nitrogen was retained as dinitrogen gas in the floodwater and soil porewater respectively. Recovery of the15N applied as nitrogen gases, plant uptake, and soil and floodwater constituents totaled about 94% of the nitrogen added.  相似文献   

19.
Phosphoroamide urease inhibitors were evaluated for their ability to increase grain protein and yield of winter wheat (Triticum aestivum L.) when added to surfaceapplied urea-based fertilizers. Six urease inhibitors [trichloroethyl phosphorodiamidate, diethyl phosphoric triamide, dimethyl phosphoric triamide, N-(diaminophosphinyl)-cyclohexylamine, N-benzyl-N-methyl phosphoric triamide, and phenylphosphorodiamide] were evaluated. Nitrogen treatments were urea prills, urea solution, and ureaammonium nitrate (UAN) solution broadcast and UAN solution band applied. Ammonium sulfate and no N treatments were included as controls. Fertilizer treatments were applied in the fall and spring. Soils were Ryker silt loam (Typic Paleudalf), Rensselaer loam (Typic Argiaquoll), and Avonburg silt loam (Aeric Fragiaqualf).Grain yield was a more responsive indicator of N addition than was grain N content. Urea prills and ammonium sulfate were more effective fertilizers than was UAN solution. UAN was not more effective applied in a band than broadcast. Urease inhibitors did not improve the efficiency of urea fertilizers since NH3 volatilization did not appear to be a problem following addition of urea fertilizers in spring or fall.Journal Paper No. 10528. This work was supported in part by a grant from Allied Chemical, Solvay, NY 13209.  相似文献   

20.
Nitrapyrin [2-chloro-6-(trichloromethyl)pyridine] has been shown to delay nitrification and may increase nitrogen (N) utilization efficiency of crops under N loss conditions. Current application recommendations suggest immediate incorporation. With fertilizer N sources such as urea and urea-ammonium nitrate (UAN) solution, immediate incorporation may not be practical. Experiments were conducted with irrigated corn (Zea mays L.) over 3 years to determine if nitrification inhibitor (NI) incorporation and contact with the fertilizer source was essential with urea and UAN to maintain efficacy of nitrapyrin and etridiazol [5-ethoxy-3-(trichloromethyl)-1,2,4-thiadiazole]. Nitrogen at a rate of 134 kg ha–1 was broadcast on a Hubbard loamy coarse sand (sandy, mixed Udorthentic Haploboroll) before planting. Nitrification inhibitors were applied at 0.56 kg ha–1 either as coating on urea, mixed with UAN, or applied in a broadcast application separate from the application of the N fertilizer. Incorporation was conducted immediately after NI application. Leaching losses, reduced N availability each year of experimentation. Nitrogen uptake from urea with no NI applied was 26% higher than uptake from UAN and resulted in 11% higher grain yields. Volatilization of urea from either N source was not apparent. Nitrapyrin and etridiazol produced similar increases in N utilization and yield. Incorporation of nitrapyrin and etridiazol was essential to obtain efficacy with both fertilizer sources. Incorporation of both NIs (averaged over NI) increased grain yields 28% with urea and 16% with UAN. Separate applications of NI provided comparable results to application with the fertilizer material if the NI was incorporated immediately.Journal Paper No. 16074 Univ. of Minnesota Agric. Expt. Sta., St. Paul, MN 55108. Contribution from the Department of Soil Science. This work was supported in part by Dow Chemical U.S.A. and the Olin Corp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号