首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文研究一种新的泡沫铝制备方法-粉体发泡法。其工艺原理为:混合铝粉与一种发泡剂粉末(TiH2),在一定温度下轴向压缩得到具有气密结构的预制品,加热预吕使发泡剂分解释放出气体迫使预制品膨胀得到泡沫铝。混合、压制和发泡是粉体发泡法的三个重要环节。本论文详细研究了各个工艺过程,确定了其在试验条件下的最佳工艺参数。混合速率250r/min,混合时间大于6h可以保证得到混合均匀的粉末混合物。压力130-150MPa,压制混合400℃-450℃时可以得到具有气密结构的预制品。同时调整发泡工艺中的参数发泡剂用量(1%左右)、发泡温度(600℃-7200℃),发泡时间(3-15min)可以得到不同孔结构的泡沫铝。泡沫铝的吸能能力和其压缩性能紧密相连。在其压缩应力应变曲线上有很长的一段平台区,显示出较大的吸能能力。其吸能能力受孔隙率的影响,随孔隙率呈非单调变化,在某一孔隙率下具有最大的吸能能力。吸能效率随应变的增加先增大后减小,在应变0.1-0.3之间存在一个峰值。泡沫铝的吸能能力和其压缩性能紧密相连。在其压缩应力应变曲线上有很长的一段平台区,显示出较大的吸能能力。其吸能能力受孔隙率的影响,随孔隙率呈非单调变化,在某一孔隙率下具有最大的吸能能力。吸能效率随应变的增加先增大后减小,在应变0.1-0.3之间存在一个峰值。研究了闭孔泡沫铝的导热性能,结果表明泡沫铝的导热性能低于实体铝,其导热性能不仅与孔隙率有很大的关系,而且其它孔结构及其宏观结构的影响也是不容忽视的。  相似文献   

2.
泡沫铝预制品制备工艺的研究   总被引:2,自引:0,他引:2  
粉末实体发泡法泡沫铝制备工艺包括混合、压制和发泡三个过程。本文对其压制工艺进行了详细研究。试验表明压制温度和压力是压制工艺的两个最重要的工艺参数,同时升温与加压可以保证得到具有气密结构的预制品。根据正交试验,得到试验条件下的压制工艺参数:压力约为130Mp-150Mp,压制温度为400℃-450℃。  相似文献   

3.
基于发泡剂预处理的两步法泡沫铝制备工艺研究   总被引:4,自引:0,他引:4  
游晓红  王录才  于利民  王芳  李海娟 《铸造》2005,54(3):286-289
研究了基于发泡剂预处理的两步法泡沫铝制备工艺,即获得可发泡的预制品,发泡剂在熔体中分散和重新升温发泡,发泡剂分解释气.通过在发泡剂表面涂敷铝溶胶,推迟分解释气时间(4 min左右),实现了将发泡剂在熔体中的分散和分解发泡分开的目的.研究了各阶段工艺参数对发泡效果的影响规律,分析确定了试验条件下的最佳工艺参数值.结果表明,经缓释处理的发泡剂用量为2%、混合搅拌时间为3 min时,可得到质量较好的泡沫铝预制品.  相似文献   

4.
小孔径泡沫铝的制备及压缩性能研究   总被引:2,自引:0,他引:2  
在常规熔体发泡法基础上,采用添加0.5%Mg(质量分数,下同)以降低表面张力;发泡剂400 ℃,6 h+500℃,1 h氧化预处理以协调发泡剂分散均匀性与发泡过程关系;发泡搅拌60s以破碎初始气泡等措施,成功制备出了平均孔径1.3 mm、孔隙率70.5%、结构均匀的小孔径泡沫铝.泡沫铝及Al-9Si泡沫的压缩性能分析表明,随平均孔径减小,泡沫铝的屈服强度、致密化应变和能量吸收能力均明显提高,泡沫铝压缩性能随孔径减小而提高,与泡沫铝的孔结构因素及孔结构均匀性有关.  相似文献   

5.
粉煤灰漂珠颗粒增强泡沫铝基复合材料的制备与研究   总被引:2,自引:0,他引:2  
利用熔体发泡法制得粉煤灰漂珠颗粒增强泡沫铝基复合材料.正交试验结果表明各影响因素对粉煤灰漂珠颗粒增强泡沫铝基复合材料孔隙率影响程度由大到小依次为:发泡时间、发泡温度和发泡剂含量.粉煤灰漂珠颗粒增强泡沫铝基复合材料的最佳制备工艺参数为:发泡时间12 min,发泡温度800℃,发泡剂含量3%.准静态压缩试验表明,粉煤灰漂珠颗粒增强泡沫铝基复合材料的应力-应变曲线可分为弹性应变区、屈服平台区和致密压实区3个区域.  相似文献   

6.
复合碳酸盐作发泡剂制备泡沫铝的工艺研究   总被引:1,自引:0,他引:1  
采用熔体发泡法制取泡沫铝,利用DSC和DTG两种方法,分析了CaMg(CO3)2的热分解特性,同时系统地研究了发泡剂含量、温度及搅拌时间对泡沫铝孔结构的影响.结果表明,发泡剂加入质量分数为2%~3%,搅拌时间1 min~2 min,发泡温度为660℃~710℃的条件下,可以制取孔结构均匀、孔隙率高的泡沫铝合金.  相似文献   

7.
采用半固态法制备泡沫铝,并对制备工艺进行了初步探索。研究了熔体浇注温度、发泡剂TiH_2添加量对Al-Si合金熔体发泡孔隙率和平均孔径的影响。研究表明,利用Al-Si合金在半固态区的自增粘作用,可以得到孔隙率为20%~50%、孔径为2~4 mm的泡沫铝;浇注温度在650~670℃时,随浇注温度的升高,Al-Si合金泡沫铝试样孔隙率增加,更高的浇注温度使孔隙率减少;发泡剂TiH_2添加量在1%~3%时,随发泡剂添加量的增加,孔隙率和孔径均增加,发泡剂过多反而使孔隙率和孔径减小。浇注温度为670℃、TiH_2添加量3%时,Al-Si熔体发泡效果最优,孔隙率可达48%。  相似文献   

8.
《铸造技术》2019,(8):768-771
采用熔体发泡工艺,用纯铝作原料,氢化钛为发泡剂,金属钙粉为增粘剂,制备出孔结构均匀,孔隙率大于80%,孔径大于4.2mm的闭孔泡沫铝,整个工艺过程控制平稳。探讨了发泡温度、金属钙粉和氢化钛加入量及搅拌时间对泡沫铝结构的影响。结果表明,增粘剂钙粉的加入量为1.5%~2.0%,增粘温度850~860℃,搅拌时间为2.0~2.5 min,发泡剂TiH_2的加入量为1.5%~2.0%,发泡温度为680~690℃,发泡搅拌速度和时间分别为860 rpm和2.0~2.5 min,保温时间4.5~6.0 min时为最佳工艺。  相似文献   

9.
泡沫铝是一种新型的具有广泛应用前景的材料,对其制备工艺、性能和应用的研究已取得了较大的进展。制备工艺仍然是泡沫铝发展的最基本的问题,本文以热压成形无约束条件下的PCM法发泡工艺作为主要的研究对象,并对泡沫铝气孔结构的演变进行研究,结果表明:炉温温度对泡沫铝的发泡有着重要影响:当炉温700℃时,加热速度很慢,试样不能获得好的发泡效果,当炉温为750℃、800℃、850℃时,均能得到良好的发泡效果,其能达到的最大孔隙率分别为:55.1%、60.5%、64.2%,炉温越高,试样达到熔点需要的时间越短。泡沫铝试样孔结构的演变过程为:形核,长大,达到峰值后坍塌。  相似文献   

10.
熔体吹气发泡法制备泡沫铝的试验研究   总被引:7,自引:0,他引:7  
利用熔体吹气发泡法制备闭孔泡沫铝的工艺以及工艺参数对发泡效果的影响,发现以铝硅合金为原料,Al2O3颗粒为增粘剂制备的泡沫铝孔隙率达90%以上,气孔均匀的泡沫铝其工艺参数为:发泡温度为750~780 ℃,增粘颗粒体积分数为10%~15%,气体流量为0.5~1.5 L/min.研究表明,熔体吹气发泡法制备泡沫铝简单、高效,制备样品孔隙率高,是一种有较好开发前景的制备方法.  相似文献   

11.
闭孔泡沫铝的电磁屏蔽性能   总被引:22,自引:3,他引:22  
采用粉末冶金发泡法制备闭孔泡沫铝,通过调整发泡剂含量、发泡温度、粘度、保温时间等手段,制得孔隙率可调、孔洞分布均匀的闭孔泡沫铝样品,并测试了不同孔隙率、孔径泡沫铝样品的电磁屏蔽性能.结果表明:在100~1000MHz内,泡沫铝的电磁屏蔽性能在60~90dB之间,且随着孔隙率、孔径的增加,泡沫铝的电磁屏蔽性能下降.  相似文献   

12.
研究了一种在泡沫铝制备过程中可替代TiH2及ZrH2类发泡剂的新型发泡粉末的热分解行为,探讨该新型发泡剂加入量及发泡温度等因素对泡沫铝孔隙率的影响。研究表明:该新型发泡材料具有分解温度范围宽及分解过程缓慢的特点。当采用该发泡剂时,泡沫铝制备过程无需额外加入金属Ca类增粘剂;随发泡温度的升高,泡沫铝的孔隙率先升高后下降;随发泡剂量的增多,发泡体中的无泡层逐渐减少,当发泡剂的加入量在1.40%以上时,发泡体中的无泡层消失;在发泡温度740℃、发泡剂加入量1.40%~2.20%、搅拌时间3min、保温发泡时间5min的条件下,可以制备出孔径2~5mm,孔隙率60%~80%,孔隙基本均匀且无实心体的泡沫铝。  相似文献   

13.
陶勇 《铸造技术》2014,(11):2660-2662
以Ca Mg(CO3)2为发泡剂,Ca粉为增粘剂,ZLD 102铝硅合金为基体制备泡沫铝,探讨其工艺可行性。结果表明,以Ca Mg(CO3)2为发泡剂制备泡沫铝是可行的,其最佳发泡温度为710℃,搅拌时间为2 min,保温时间为48min。所制备泡沫铝的孔隙率可达86.42%,密度为0.36 g/cm3。  相似文献   

14.
为避免传统方法制备大面积闭孔泡沫铝工艺过程的局限性,采用搅拌摩擦加工技术结合加热工艺制备闭孔泡沫铝复合材料。采用有限元软件对搅拌摩擦加工制备预制体过程的温度场进行了模拟仿真,研究了制备工艺参数对泡沫铝预制体质量的影响规律。利用光学金相显微镜对不同加工工艺参数及发泡时间条件下制备的泡沫铝孔隙率和形貌进行了分析。同时,对闭孔泡沫铝进行了准静态压缩性能试验,研究了不同孔隙率下泡沫铝的压缩性能。结果表明,与搅拌针移动速度相比,不同旋转速度对闭孔泡沫铝预制体的形貌影响更大。当搅拌针移动速度50 mm·min-1、旋转速度2000 r·min-1时,焊核区金属和夹层中的混合粉末发生了充分的塑性变形,粉末圈分布连续且均匀。模拟结果表明:搅拌摩擦加工时最高温度区域出现在搅拌针附近,呈“碗状”分布,此时温度达到最大值491℃,焊核区金属和夹层中的混合粉末发生充分塑性变形和流动,模拟结果与试验结果一致。经过680℃发泡后,泡沫铝最大孔隙率为69.3%,平均泡孔直径为Φ130μm,屈服应力为3.2 MPa,平台应力值为2.9 MPa。  相似文献   

15.
采用搅拌摩擦焊(FSW)工艺制备了粉末混合均匀、无缺陷的泡沫铝(AF)预制坯.对获取的高质量预制坯的发泡过程进行研究,探究最佳发泡温度和发泡时间,制备出孔径结构均匀、高孔隙率的铝合金泡沫夹芯板.运用FLUENT中VOF模型,对气泡在熔融铝液中的行为进行了模拟仿真,研究了泡孔在铝基体中的形成、生长、稳定和聚结过程.结果 ...  相似文献   

16.
熔体吹气发泡法制备泡沫铝研究   总被引:6,自引:0,他引:6  
王倩  徐方明  许庆彦  熊守美 《铸造》2007,56(8):814-818
利用熔体吹气发泡法制备出了闭孔泡沫铝,观察了样品的表面形貌,并通过试验测试其力学性能;分析了发泡温度、Al2O3粉末体积分数对泡沫铝制备的工艺影响。试验结果表明:加入的Al2O3粉末必须达到一定的百分比,铝液中通入气体才会产生泡沫,在700℃和720℃时,Al2O3粉末体积分数的临界点分别为4%和6%;泡沫的稳定性随着温度的增高而降低;Al2O3体积分数越大,气体流量越大,泡沫铝孔径越大;但当Al2O3粉末体积分数超过20%时,很难发泡。  相似文献   

17.
在对静态PCM法制备泡沫铝的研究基础上,设计出动态制备大尺寸泡沫铝的实验装置,通过调整温度来控制预制体的发泡。研究了两种不同牵引速度(0.496 mm/s、0.687 mm/s)下预制体的发泡过程,研究发现:所得大尺寸泡沫铝孔结构质量(通过孔隙率、当量圆直径来衡量)随着发泡温度升高而提高,当温度超过800℃(v=0.496 mm/s)、820℃(v=0.687 mm/s)时,泡沫铝孔结构质量反而会下降。同时对其影响机理进行了分析。当牵引速度为0.496 mm/s时,发泡温度在780℃~800℃时,可以获得孔隙率在70%以上,孔径在2.75 mm左右,孔结构圆形度在0.68以上的大尺寸泡沫铝;当牵引速度为0.687 mm/s时,发泡温度在800℃~820℃时,可以获得孔隙率在65%~70%,孔径在2.5 mm左右,孔结构圆形度在0.67以上的大尺寸泡沫铝。  相似文献   

18.
利用同步辐射装置的SR-CT,通过图像的断层扫描及3D重建,对轧制复合-粉末冶金发泡工艺制备的泡沫铝夹芯板(AFS)进行了泡孔结构演化的研究,分析了发泡过程中孔隙率的变化及大尺寸连通孔的形成原因。研究结果表明:具有微米级空间分辨率的SR-CT可清晰地观测到泡孔萌生及生长各阶段的泡沫结构。泡孔在发泡15~30 s阶段生成,形状为垂直于轧制方向的类裂纹孔。发泡45 s时,泡孔开始发生明显合并,继续延长发泡时间易导致形成大尺寸连通孔。芯层泡沫铝的孔隙率在泡孔的萌生阶段及合并阶段增长幅度较大,减少混料时发泡剂的"团聚"及提高芯层粉末致密度可获得良好的芯层泡沫结构。  相似文献   

19.
应变速率对闭孔泡沫铝力学性能和能量吸收性能的影响   总被引:7,自引:1,他引:7  
采用分离式霍普金森压杆 (SHPB)技术 ,研究了应变速率 (1× 10 - 3s- 1 ~ 2 5 0 0s- 1 )对泡沫铝力学性能和能量吸收性能的影响。结果表明 :泡沫铝有较高的应变速率敏感性 ,随应变速率的增加 ,泡沫铝的屈服强度和吸能能力增加 ,泡沫铝的应变速率敏感性随应变、应变速率变化幅度的增加而增加。  相似文献   

20.
周全  陈乐平  尹健 《热加工工艺》2012,41(7):8-10,14
采用熔体发泡法,对不同发泡剂粒度和发泡温度下泡沫镁合金的结构进行研究。结果表明:通过控制发泡剂的粒度和发泡温度,可制备出密度、孔隙率及气孔大小可调的泡沫镁合金;随着发泡剂粒度的增加,泡沫镁合金的密度先减小后增大,当发泡剂粒度为0.25mm时,泡沫镁合金的密度最小;随着发泡温度的提高,泡沫镁合金的密度逐渐减小;泡沫镁合金孔隙率的变化规律与密度的变化规律相反;随着发泡剂粒度的增加或发泡温度的升高,泡沫镁合金的气孔尺寸逐渐增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号