共查询到20条相似文献,搜索用时 49 毫秒
1.
模糊C均值(FCM)聚类算法广泛应用于图像的自动分割,但标准的FCM算法存在计算量大,运算速度慢等问题。对FCM算法进行改进,提出了一种快速FCM图像分割算法(FFCM),该算法将图像从像素空间映射到其灰度直方图特征空间,并在此基础上,充分利用像素的邻域特性,对隶属度函数做一定改进,实验结果表明该算法能快速有效地分割图像,并具有较好的抗噪能力。 相似文献
2.
基于空间信息的可能性模糊C均值聚类遥感图像分割 总被引:1,自引:0,他引:1
可能性模糊C均值(PFCM)聚类算法作为模糊C均值(FCM)聚类算法的一种改进算法,能在一定程度上克服FCM算法对噪声的敏感性;但由于PFCM没有考虑像元间的空间信息,对含有较大噪声的图像分割效果依然不理想。为此,提出一种新的基于空间信息的PFCM算法(SPFCM),克服了PFCM算法对含有较大噪声的图像分割效果不佳的缺点。通过对人工图像和IKONOS遥感图像进行分析,结果表明,SPFCM算法无论是在视觉上还是在分割正确率上都优于传统的FCM算法、PFCM算法及两种加入空间信息的FCM算法;对于含有高斯噪声和盐椒噪声的图像,平均分割正确率高达99.71%,是一种去噪效果较好的图像分割算法。 相似文献
3.
结合空间信息的模糊C均值聚类图像分割算法 总被引:3,自引:0,他引:3
提出一种结合空间信息的模糊C均值聚类图像分割算法.该方法将图像的二维直方图引入传统的模糊C均值聚类算法,并对隶属函数做了改进;依据平方误差和最小准则,来确定模糊分类矩阵及聚类中心;最后,依据最大隶属度原则,划分图像像素的类别归属.实验结果表明,该方法能快速有效地分割图像,并且具有较强的抗噪能力. 相似文献
4.
结合模糊C均值聚类与图割的图像分割方法 总被引:3,自引:0,他引:3
本文针对模糊C均值聚类没有考虑像素空间信息的不足,提出一种结合模糊C均值聚类与图割的图像分割方法。本文以图割理论为基础,考虑到像素的空间信息,建立一个关于标号的全局能量函数,以FCM聚类中心为终端建立多终端网络图,该网络通过 扩展移动算法求解全局最小或近似最小能量函数所对应的标号函数 ,在各类间重新划分所有像素点,实现目标正确分割。实验表明,本文方法在分割精度、性能、抗噪性等方面均有较大改进。 相似文献
5.
模糊C均值聚类算法在多元图像分割中的应用 总被引:1,自引:0,他引:1
改进的模糊C均值聚类算法在对多元图像进行分割的过程中,通过给图像中各个类的对象分配不同的权值来提高模糊C均值聚类算法对不同大小类的敏感性。实验证明,经过改进的模糊C均值聚类算法克服了原始算法对多元图像中类大小敏感性差的问题。 相似文献
6.
分类数和初始聚类中心的选取对红外图像的分割结果有较大的影响。传统的模糊C均值算法的分类数和聚类中心往往设定为经验值。为获得最佳的分类数,提出采用轮廓指标确定出较理想的分类数。针对传统的模糊C均值聚类算法对初始聚类中心比较敏感的问题,提出了基于直方图灰度值的最小最大距离法来确定初始聚类中心。实验结果表明该方法有效可行。 相似文献
7.
周围神经切片显微图像具有背景复杂、区域不连续和光照不均匀等特点,应用经典的图像分割算法难以取得有效的分割结果。通过结合初始隶属度概率函数和空间距离来设计空间函数而得到的SFCM聚类算法,并提出SFCM彩色图像分割方法。把图像从RGB颜色空间转换到HIS颜色空间。采用聚类有效性分析指标在直方图快速FCM算法中为HSI各分量确定分类数目和获取SFCM初始化参数。对HIS各分量分别进行SFCM聚类,合并各分量并转换回RGB彩色空间以显示结果。实验结果表明,与标准FCM聚类分割算法相比,新方法能更有效地分割区域不连续的神经切片显微图像。 相似文献
8.
基于模糊C均值(FCM)聚类算法,并利用遗传算法全局随机搜索的特点,提出了一种图像分割的改进遗传算法。该算法首先采用一种初值化算法确定合适的遗传算法的初始搜索范围,然后对遗传算法中的编码方式、交叉算子、变异算子等参数进行了一些适当改进,进而给出了该算法的理论推导和算法的具体实现步骤。该算法除了解决模糊C均值聚类算法在医学图像分割中容易陷入局部最优解的问题,而且采用的初值化算法比标准的遗传模糊C均值聚类算法能确定更合适的遗传算法的初始搜索范围,从而加速了遗传算法的收敛过程。实验表明,该方法相对于标准的遗传模糊C均值聚类算法,效果要好得多。 相似文献
9.
模糊聚类,特别是模糊C均值聚类算法(FCM)广泛地运用到图像的分割中。但是传统的算法未对数据对特征进行优化,亦未考虑图像的空间信息,对噪声图像分割不理想。在FCM目标函数中引入核函数,用内核引导距离代替传统的欧式距离,同时考虑到邻近象素的影响,增加了空间约束项,提出了利用空间信息的核FCM算法。通过对模拟图和仿真脑部MR图像的分割实验证明,该算法可以有效的分割含有噪声图像。 相似文献
10.
Mean shift 模糊C 均值聚类图像分割算法 总被引:1,自引:0,他引:1
针对传统模糊C均值(FCM)聚类算法对结构复杂图像分割效果不理想且算法执行效率较低的缺陷,提出一种融合均值平移(mean shift)的FCM聚类算法.利用mean shift算法将图像分成若干同质区域,将此区域视为新的节点;通过图像局部信息熵描述新节点的空间和灰度特征;采用能较好模拟人眼非线性视觉响应的指数函数进行相似性测度.实验结果表明,对于复杂背景图像和含噪声图像,所提出的算法在目标提取效果和执行效率上具有较强的鲁棒性. 相似文献
11.
快速广义模糊C均值聚类(FGFCM)在对高噪声图像进行聚类分割时,噪声容易导致聚类中心发生偏移,影响图像分割结果.为此,文中提出基于自适应滤波的快速广义模糊C均值聚类算法,用于图像分割.首先根据非局部像素的噪声概率自适应确定参数平衡因子,更准确地反映图像包含的空间结构信息.然后利用该平衡因子有效结合FGFCM中的线性加权和滤波图像与原始图像的中值滤波图像,由于得到的自适应滤波图像根据图像中像素为噪声的概率自适应确定滤波程度,因此可以提高算法对噪声的动态抑制能力.实验表明,相比模糊C均值聚类和FGFCM,文中算法在对噪声含量较高的图像进行聚类分割时,可以得到更准确的结果. 相似文献
12.
入侵检测系统是网络和信息安全构架的重要组成部分,本文对现有入侵检测技术所存在不足进行分析的基础上,将改进的模糊C均值聚类算法应用于入侵检测。实验采用KDD99数据集进行测试,结果表明,该方法具有可行性和有效性。 相似文献
13.
入侵检测系统是网络和信息安全构架的重要组成部分.本文对现有入侵检测技术所存在不足进行分析的基础上.将改进的模糊C均值聚类算法应用于入侵检测。实验采用KDD99数据集进行测试,结果表明,该方法具有可行性和有效性。 相似文献
14.
叶鹏 《电脑编程技巧与维护》2010,(20):20-22
介绍一种基于模糊逻辑的数据聚类技术,讨论了模糊C均值聚类方法。模糊C均值算法就是利用模糊逻辑理论和聚类思想,将n样本划分到c个类别中的一个,使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。 相似文献
15.
针对传统模糊聚类分割方法无法有效模拟数据分布特征的问题,提出基于邻域约束高斯混合模型的模糊聚类图像分割算法.利用高斯分布刻画聚类内像素光谱测度统计特征,定义像素与其邻域像素相关性的先验概率,并作为高斯混合模型中各高斯分量权重系数,构建包含特征场邻域作用的高斯混合模型.利用高斯分量描述像素与聚类间的非相似性测度,建立基于高斯混合模型的模糊聚类目标函数.在传统模糊聚类方法基础上,采用高斯混合模型定义像素与聚类间的非相似性测度,并在高斯混合模型中融入邻域作用,有效解决数据具有多峰值特征的问题.最后通过实验验证文中算法的准确性. 相似文献
16.
17.
18.
19.
提出了一种基于改进模糊C均值的BP神经网络分类器的设计,通过改进的模糊C均值算法对大量的数据进行聚类划分,然后设计BP神经网络对划分后的数据进行训练和测试,最后由计算机进行综合判断.试验证明该分类器是有效的,可以对高速公路车辆的车型进行迅速判别. 相似文献
20.
模糊C均值聚类用于彩色图像分割具有简单直观,易于实现的特点,但存在聚类性能受中心点初始化影响且计算量大等问题,为此,提出一种自适应模糊C均值分割方法.算法根据人类的视觉特性,参照NBS距离与人类视觉对颜色差别的定量关系,结合具体图像的色彩分布,自动确定初始聚类中心及聚类数目,继而进行模糊C均值聚类.实验表明,该方法无需人为的干预,分割速度快,分割效果跟人的主观视觉感知保持了良好的一致性. 相似文献