首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
高聚合度PVC/PP/相容剂共混改性体系研究   总被引:4,自引:1,他引:4  
窦强  郑昌仁 《中国塑料》1996,10(6):37-42
采用CPE、ABS和PP溶体接枝物等作相容剂恶性状聚合物PVC/PP共混物的相容性,并考察共混比、相容剂用量、增塑剂用量、EPDM用量、相容剂种类对高聚合度PVC/PP共混物力学性能和微观形态的影响。  相似文献   

2.
分别采用CPE、ABS、PPgMA、PPgPAA和低分子量反应性化合物作相容剂来改善HPVC/PP共混物的相容性。结果表明:用它们作相容剂可以提高HPVC/PP共混物的力学性能,改变其形态结构,减小分散相尺寸,改善相容性。其中CPE是最佳相容剂。  相似文献   

3.
相容剂对NBR/PP共混型热塑性弹性体性能的影响   总被引:9,自引:2,他引:9       下载免费PDF全文
考察了普通氯化聚乙烯(CPE)、高氯化CPE、马来酸酐接枝聚丙烯及复合氯化聚丙烯(CPP)等相容剂对NBR/PP共混体系性能的影响。试验结果表明,复合CPP是NBR/PP共混体系的理想相容剂,其最佳用量为6份;以此为相容剂的NBR/PP共混体系具有优良的热塑性,NBR/PP共混型热塑性弹性体可采用热塑性塑料通用的加工方法进行加工。  相似文献   

4.
热致性液晶共聚酯/聚丙烯共混物   总被引:4,自引:0,他引:4  
通过熔融共混制备了不同配比的(PHB/PET)/PP共混物,研究表明,共混物的弯曲弹性模量,弯曲强度及拉伸强度均比PP有所提高,当液晶含量为15%,PP-g-MAH为20%时,(PHB/PET)(PP-g-MAH)/PP三元共混物弯曲弹性模量最大,PP-g-MAH作为两相界面相容剂,改善了两相间的亲合性。DSC分析表明,共混物中PP相的结晶温度有较大幅度的提高,(PHB/PET)共聚酯起了PP结晶  相似文献   

5.
热致液晶共聚酯—聚碳酸酯原位复合体系的性能   总被引:2,自引:0,他引:2  
液晶共聚酯60PHB/PET(TLCP)与聚碳酸酯(PC)共混可制备原位复合材料,两者1:1的共聚物(TLCP-b-PC)可作其共混体系的相容剂。本文对该原位复合体系的流变性能、力学性能、纺丝性能和微观形态作了讨论。结果表明:该体系为切力变稀流体;PC:TLCP:TLCP-b-PC组成为79:19:2时,综合力学性能最优;不同原位复合体系最佳纺丝温度各不相同;相容剂对提高界面粘合力起了良好的作用。  相似文献   

6.
PP/PE共混物的拉伸力学性能   总被引:2,自引:0,他引:2  
应用Instron材料试验机,考察了室温下聚丙烯(PP)与低密度聚乙烯(LDPE)和高密度聚乙烯(HDPE)共混物的拉伸力学性能.结果表明,PP/LDPE共混物的拉伸强度和弹性模量与组份的关系符合对数混合法则。而PP/HDPE共混物的力学性能与组份的关系则较为复杂。  相似文献   

7.
相容剂对PS/PP共混合金混容形态和性能的影响   总被引:3,自引:0,他引:3  
研制了马来酸酯接枝聚丙烯相容剂,并将其用于聚苯乙烯/聚丙烯的共混改性;通过力学性能测试、透射电镜分析、差示扫描量热分析等方法研究了相容剂对PS/PP合金的混容形态和力学性能的影响。结果表明:相容剂的加入,使PS/PP由不相容的独立聚集的两相变为相畴很小的细分散相,共混高分子的链段运动也表现为趋于均相结构的运动方式。加入相容剂后共混材料的冲击强度有明显提高,拉伸强度也有所上升。相容剂的含量对性能也有较大影响,相容剂用量为8%时,力学性能最好,从DSC测试中可以看到此时共混物趋向均相体系;继续增大相容剂用量,合金的力学性能反而下降。  相似文献   

8.
韩怀芬 《塑料科技》1994,(3):17-19,27
本文通过对回收LDPE/CaCO3填充、回收LDPE/HDPE共混、回收LDPE/PP共混体系的研究,得出了较好力学性能的土工排水带板芯的配方.  相似文献   

9.
EPDM/聚烯烃共混型热塑性弹性体的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
龚蓬  张祥福  张隐西 《橡胶工业》1996,43(8):451-457
制备EPDM/聚烯烃简单共混型热塑性弹性体。研究了聚合物种类、橡塑比、二元和三元共混对共混物力学性能的影响。结果表明,部分结晶性EPDM共混物的力学性能比无定形EPDM共混物好,部分结晶性EPDM与LDPE(低密度聚乙烯)共混物的拉伸强度大于两者的加和值,而其它二元共混物的拉伸强度均低于两共混单元的加和值;用LDPE部分替代PP,或用氯磺化聚乙烯(CSM)部分替代结晶性EPDM进行三元共混,能改善部分结晶性EPDM/PP共混物的某些性能。  相似文献   

10.
天然橡胶/氯醚橡胶/相容剂共混物的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
刘承美  罗利玲 《橡胶工业》1995,42(7):387-392
利用差示扫描量热法(DSC)和相差显微镜(PDM)对氯化聚乙烯(CPE)、丁腈橡胶(NBR26)和环氧化天然橡胶(ENR50)作天然橡胶/氯醚橡胶(NR/EHR)体系的相容剂进行了研究。通过考察共混胶的力学性能,确定了相容剂的适宜用量和共混时间。结果表明,CPE,NBR26和ENR50能有效提高EHR在NR中的分散程度,混炼时间15min,用量10—15份为宜。  相似文献   

11.
Polypropylene was melt blended in a single screw extruder with thermo tropic Vectra B‐950 liquid crystalline polymer (copolyester amide) in different proportions in presence of 2% of EAA, ethylene‐acrylic acid copolymer (based on PP) as a compatibilizer. The mechanical properties of such compatibilized blends were evaluated and compared in respect of their Young's Modulii, Ultimate tensile strength, percent elongation at break, and toughness to those of Pure PP. The Morphology was studied by using a polarizing light microscope (PLM) and Scanning electron microscope (SEM). The Thermal characterization of these blends were carried out by differential scanning calorimeter (DSC).The mechanical properties under dynamic conditions of such compatibilized blends and pure PP were studied by dynamic mechanical analyzer (DMA). Mechanical analysis (Tensile properties) of the compatibilized blends displayed improvements in Modulii and ultimate tensile strength (UTS) of PP matrix with the incorporation of 2–10% of LCP incorporation. The development of fine fibrillar morphology in the compatibilized PP/LCP blends had large influence on the mechanical properties. Differential scanning calorimeter (DSC) studies indicated no remarkable changes in the crystalline melting temperature of the blends with respect to that of pure PP. However, an increase in the softening range of the blends over that of PP was observed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Maleic anhydride compatibilized blends of isotactic polypropylene (PP) and thermotropic liquid crystaline polymer (LCP) were prepared either by the direct injection molding (one-step process), or by twin-screw extrusion blending, after which specimens were injection molded (two-step process). The morphology and mechanical properties of these injection molded in situ LCP composites were studied by means of scanning electron microscopy (SEM), Izod impact testing, static tensile, and dynamic mechanical measurements. SEM observations showed that fine and elongated LCP fibrils are formed in the maleic anhydride compatibilized in situ composites fabricated by means of the one-step process. The tensile strength and modulus of these composites were considerably close to those predicted from the rule of mixtures. Furthermore, the impact behavior of LCP fibril reinforced composites was similar to that of the glass fiber reinforced polymer composites. On the other hand, the maleic anhydride compatibilized blends prepared from the two-step process showed lower mechanical performance, which was attributed to the poorer processing behavior leading to the degradation of PP. The effects of the processing steps, temperatures, and compatibilizer addition on the mechanical properties of the PP/LCP blends are discussed.  相似文献   

13.
Polypropylene (PP) was melt‐blended in a single‐screw extruder with a thermotropic Vectra B‐950 liquid crystalline polymer (LCP) in different proportions. The mechanical properties of such blends were compared in respect of their Young's moduli, ultimate tensile strength (UTS), percent elongation at break, and toughness to those of pure PP. The thermal properties of these blends were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The morphology was studied by using a polarizing light microscope (PLM) and a scanning electron microscope (SEM) while the rheological aspects of the blends and the pure PP were studied by a Haake Rheowin equipment. Mechanical analysis (tensile properties) of the blends showed pronounced improvement in the moduli and the UTS of the PP matrix in the presence of 2–10% of LCP incorporation. TGA of all the blends showed an increase in the thermal stability for all the blends with respect to the matrix polymer PP, even at a temperature of 410°C, while PP itself undergoes drastic degradation at this temperature. DSC studies indicated an increase in the softening range of the blends over that of PP. Morphological studies showed limited mixing and elongated fibril formation by the dispersed LCP phase within the base matrix (PP) at the lower ranges of LCP incorporation while exhibiting a tendency to undergo gross phase separation at higher concentrations of LCP, which forms mostly agglomerated fibrils and large droplets. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 767–774, 2003  相似文献   

14.
Blends of thermotropic liquid crystalline polymer (LCPA‐950), based on a copolyester of hydroxynapthoic acid and hydroxybenzoic acid with an engineering thermoplastic, poly(phenylene sulfide) (PPS), were prepared using a corotating twin‐screw extruder. Addition of a third component, a functionalized polypropylene (maleic anhydride grafted polypropylene, MA‐PP), that interact with the thermotropic liquid crystalline polymer (TLCP) facilitates the structural development of the TLCP phase by acting as a compatibilizer at the interface. Differential scanning calorimetry and dynamic mechanical thermal analysis results, however, show that there is an interaction between the polymers in the presence of compatibilizer. This means that MA‐PP can be used as a compatibilizer for the PPS/LCP in situ composite system. The viscosity of the compatibilized in situ composite was decreased by the compatibilizer, and this is mainly due to the fibrous structure of the LCP at the high shear rate. The mechanical properties of the ternary blends were increased when a proper amount of MA‐PP was added. This is attributed to fine fibril generation induced by the addition of MA‐PP. Morphological observations determined the significance of the third component in immiscible polymer blends, and an optimum amount of MA‐PP exists for the best mechanical performance. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
多单体接枝聚丙烯对PP/PA6共混物形态及力学性能的影响   总被引:1,自引:1,他引:0  
用同向双螺杆挤出机制备了马来酸酐(MAH)、苯乙烯(St)多单体熔融接枝聚丙烯[PP-g-(St-MAH)],将其作为增容剂在Haake转矩流变仪上与PP/PA6共混得到PP/PA6/PP-g-(St-MAH)共混物,并对共混物的性能及结构进行了表征。结果表明,该增容剂明显改善了共混物的力学性能,当增容剂含量为15~20份时,共混物的冲击强度和拉伸屈服强度达最大值。采用扫描电子显微镜观察共混物试样断面的形态,发现分散相的粒径明显减小,且分散均匀。  相似文献   

16.
Polypropylene (PP) and Vectra A950, a thermotropic liquid crystalline polymer (LCP), blends were prepared in a single‐screw extruder with the variation in Vectra A950 content in presence of fixed amount (2%, with respect to PP and LCP mixture as a whole) of ethylene‐acrylic acid (EAA) copolymer as a compatibilizer. Mechanical analysis of the compatibilized blends within the range of LCP incorporations under study (2–10%) indicated pronounced improvement in the moduli, ultimate tensile strength (UTS), and hardness. Fourier transform infrared (FTIR) spectroscopy studies revealed the presence of strong interaction through H‐bonding between the segments of Vectra A950 and the compatibilizer EAA. Morphological studies performed by scanning electron microscopy (SEM) manifested the development of fine fibrillar morphology in the compatibilized PP/Vectra A950 blends, which had large influence on the mechanical properties. Differential scanning calorimetry studies showed an initial drop of the melting point of PP in the presence of EAA followed by enhancement of the same in presence of Vectra A950. TGA showed an increase in the thermal stability for all blends with respect to matrix polymer PP. Rheological studies showed that a very small quantity of Vectra A 950 was capable of reducing the melt viscosity of PP particularly in the lower shear rate region and hence facilitated processibility of the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Polypropylene (PP) was melt blended with Vectra B‐950 [a thermotropic liquid crystalline polymer (LCP)], in a single screw extruder in presence of different doses of ethylene acrylic acid (EAA) copolymer, as modifier. The effect of incorporation in different proportions of EAA at a fixed dose of 5% LCP, on mechanical, thermal, morphological, and rheological properties of such blends was studied and the same were compared with that of pure PP and amongst themselves. Mechanical analysis (tensile properties) of the prepared blends exhibited improvements in ultimate tensile strength (UTS), modulus, toughness, hardness, and impact strength of PP matrix with the incorporation of EAA. The improvement in mechanical properties is associated with the formation of LCP fibrils as evidenced by scanning electron microscopy (SEM). A strong interaction through H‐bonding between the segments of Vectra B‐950 and EAA was established by FTIR study. Differential scanning calorimetry (DSC) studies indicated substantial increase in melting point of the blends, and thermogravimetric analysis (TGA) showed that the thermal stability of PP was improved with the addition of LCP and EAA. Rheological properties showed that LCP and EAA drop down the melt viscosity of PP and thus facilitate processibility of blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Ternary in situ butyl rubber (IIR)/poly(butylene terephthalate) (PBT) and liquid crystalline polymer (LCP) blends were prepared by compression molding. The LCP used was a versatile Vectra A950, and the matrix material was IIR/PBT 50/50 by weight. Morphological, thermal, and mechanical properties of blends were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry, and thermogravimetric analysis (TGA). Microscopy study (SEM) showed that formation of fibers is increasing with the increasing amount of LCP A950. Microscopic examination of the fractured surface confirmed the presence of a polymer coating on LCP fibrils. This can be attributed to some interactions including both chemical and physical one. The increased compatibility in polymer blends, consisting of IIR/PBT, by the presence of LCP A950 may be explained by the adsorption phenomena of the polymer chains onto the LCP fibrils. SEM and AFM images provided the evidence of the interaction between IIR/PBT and the LCP. Dynamic mechanical analyses (DMA) and TGA measurements showed that the composites possessed a remarkably higher modulus and heat stability than the unfilled system. Storage modulus for the ternary blend containing 50 wt% of LCP exhibits about 94% increment compared with binary blend of IIR/PBT. From the above results, it is suggested that the LCP A950 can act as reinforcement agent in the blends. Moreover, the fine dispersion of LCP was observed with no extensional forces applied during mixing, indicating the importance of interfacial adhesion for the fibril formation. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

19.
Polypropylene-liquid crystalline polymer (PP/LCP) and maleic anhydride compatibilized PP/LCP blends were prepared using the extrusion technique followed by injection molding. The LCP employed was Vectra A950 which consists of 25 mol % of 2,6-hydroxynaphthoic acid and 75 mol % of p-hydroxybenzoic acid. The rheology, morphology, and impact behavior of compatibilized PP/LCP blends were investigated. The rheological measurements showed that the viscosity of LCP is significantly higher than that of the PP at 280°C. This implied that the viscosity ratio of the LCP to the polymer matrix is much larger than unity. Scanning electron microscopy (SEM) observations revealed that the LCP domains are dispersed mainly into elongated ellipsoids in the PP/LCP blends. However, fine fibrils with large aspect ratios were formed in the compatibilized PP/LCP blends containing LCP content ≥ 10 wt %. The development of fine fibrillar morphology in the compatibilized PP/LCP blends had a large influence on the mechanical properties. The Izod impact strength of the PP/LCP blends showed little dependence on the LCP concentrations. On the other hand, the impact strength of the compatibilized PP/LCP blends was dependent on the LCP concentrations. The correlation between the LCP fibrillar morphology and spherulitic structure with the impact properties of the compatibilized PP/LCP blends is discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 521–530, 1998  相似文献   

20.
Thermotropic liquid crystalline polymers, LCPs, are frequently blended with thermoplastics to achieve an in situ composite structure. Significant mechanical reinforcement is obtained for the matrix polymer in the direction of the LCP fibers, but the transversal properties are often inferior because of the incompatibility of the components. Blends of LCP with polypropylene, and with three related matrix polymers, and PP/LCP blends with added potential compatibilizers were prepared and studied for their mechanical properties and morphology. A notable improvement in impact strength was achieved when a small amount of ethylene-based terpolymer was added as compatibilizer. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号