首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The processes in producing a lag phase in Fe2+-supported lipid peroxidation in liposomes were investigated. Incorporation of phosphatidylserine (PS) or dicetyl phosphate (DCP) into phosphatidylcholine [PC(A)] liposomes, which have arachidonic acid, produced a marked lag phase in Fe(2+)-supported peroxidation, where PS was more effective than DCP. Phosphatidylcholine dipalmitoyl [PC(DP)] with a net-neutral charge was still effective in producing a lag phase, though weak. Increasing concentrations of PS, DCP, and PC(DP) prolonged the lag period. Initially after adding Fe2+, slight oxygen consumption occurred in PC(A)/PS liposomes including hydroperoxides, followed by a lag phase. An increase in the hydroperoxide resulted in a shortening of the lag period. The initial events of Fe2+ oxidation accompanied by oxygen consumption were dependent on the hydroperoxide content, but significant changes in diene conjugation and hydroperoxide levels at this stage were not found. The molar ratios of both disappeared Fe2+ and consumed O2 to preformed hydroperoxide in liposomes with or without tert-butylhydroxytoluene were constant, regardless of the different amounts of lipid hydroperoxides. The antioxidant completely inhibited the propagation of lipid peroxidation in the lipid phase, following a lag phase. In a model system containing 2,2'-azobis (2-amidinopropane) dihydrochloride, Fe2+ were consumed. We suggest that Fe2+ retained at a high level on membrane surfaces play a role in producing a lag phase following the terminating behavior of a sequence of free radical reactions initiated by hydroperoxide decomposition, probably by intercepting peroxyl radicals.  相似文献   

2.
The role of plasmalogens in iron-induced lipid peroxidation was investigated in two liposomal systems. The first consisted of total brain phospholipids with and without plasmalogens, and the second of phosphatidylethanolamine/phosphatidylcholine liposomes with either diacyl- or alkenylacyl-phosphatidylethanolamine. By measuring thiobarbituric acid reactive substances, oxygen consumption, fatty acids and aldehydes, we show that plasmalogens effectively protect polyunsaturated fatty acids from oxidative damage, and that the vinyl ether function of plasmalogens is consumed simultaneously. Furthermore, the lack of lag phase, the increased antioxidant efficiency with time, and the experiments with lipid- and water-soluble azo compounds, indicate that plasmalogens probably interfere with the propagation rather than the initiation of lipid peroxidation, and that the antioxidative effect cannot be related to iron chelation.  相似文献   

3.
The antioxidant properties of the carotenoid lycopene were compared in three different model oxidative systems. In egg yolk liposomes, in the presence of 2.5 mM FeSO4 and 200 mM ascorbate, lycopene, alpha-tocopherol, and beta-carotene inhibited the accumulation of lipid peroxidation products reacting with 2-thiobarbituric acid (TBARS) in a dose-dependent mode, with the concentration of half-inhibition being 80, 30 and 130 mM, respectively. In the liposomes subjected to illumination with a He-Ne laser (632.8 nm) at a dose of 10.5 J/cm2, in the presence of 32.5 micrograms/ml hematoporphyrin derivatives (Fotogem, NIOPIC, Russia) TBARS accumulated, and this effect was inhibited by lycopene, alpha-tocopherol, and dihydroquercetin with approximately equal efficiencies (the half-inhibition concentrations were 10(-5) mM). In both systems studied, sodium azide at a concentration of 10 mM inhibited the TBARS accumulation by no more than 20%. Apparently, the inhibitory action of not only alpha-tocopherol, but also beta-carotene and lycopene was the result of their antiradical action, rather than quenching of the singlet oxygen in an aqueous medium. The introduction of lycopene, as well as beta-carotene in liposomes subjected to Fe(2+)-induced lipid peroxidation decreased the chemiluminescence (CL) intensity at the stage of CL slow flash, with no essential influence on the lag period. These data suggest that the effect of lycopene on lipid peroxidation was the result of its interaction with free radicals rather than chelating ferrous ions. The antiradical activity of lycopene was also confirmed by the method of luminol photochemiluminescence (PCL). Lycopene increased the PCL lag period (L) and decreased the PCL amplitude (A), which implies its antiradical and SOD-like activity in this system.  相似文献   

4.
To define the molecular mechanism(s) of carvedilol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Carvedilol inhibits the peroxidation of sonicated phosphatidylcholine liposomes triggered by FeCl2 addition whereas atenolol, pindolol and labetalol are ineffective. The inhibition proved not to be ascribable (a) to an effect on Fe2+ autoxidation and thus on the generation of oxygen derived radical initiators; (b) to the scavenging of the inorganic initiators O2*- and *OH; (c) to an effect on the reductive cleavage of organic hydroperoxides by FeCl2; (d) to the scavenging of organic initiators. The observations that (a) carvedilol effectiveness is inversely proportional to the concentration of FeCl2 and lipid hydroperoxides in the assay; (b) the drug prevents the onset of lipid peroxidation stimulated by FeCl3 addition and; (c) it can form a complex with Fe3+, suggest a molecular mechanism for carvedilol action. It may inhibit lipid peroxidation by binding the Fe3+ generated during the oxidation of Fe2+ by lipid hydroperoxides in the substrate. The lag time that carvedilol introduces in the peroxidative process would correspond to the time taken for carvedilol to be titrated by Fe3+; when the drug is consumed the Fe3+ accumulates to reach the critical parameter that stimulates peroxidation. According to this molecular mechanism the antioxidant potency of carvedilol can be ascribed to its ability to bind a species, Fe3+, that is a catalyst of the process and to its lipophilic nature that concentrates it in the membranes where Fe3+ is generated by a site specific mechanism.  相似文献   

5.
In order to contribute to the understanding of the biological properties of nafazatrom, an antithrombotic agent (NAP), we studied its effects on peroxidation of low density lipoproteins (LDL), lipid liposomes, heart homopgenate, and its interaction with alpha-tocopherol radical. NAP decreased the FeSO4 and H202-induced peroxidation of phosphatidylcholine liposomes and heart homogenate, and it decreased peroxidation of LDL induced by CuSO4 or 2,2'-azobis(2-amidinopropane). The antioxidant effect of NAF was about 3 times less potent than that of alpha-tocopherol (alpha-TOC) in phosphatidylcholine liposomes, and NAF was about 2-4 times more efficient to decrease peroxidation of LDL than alpha-TOC. Possible interaction of NAF with alpha-tocopherol radical (alpha-TR) was studied by EPR spectroscopy. NAF decreased the concentration of alpha-TR, but it was about 100-times less efficient than vitamin C. This may indicate that NAF does not interfere with alpha-TR formation and/or reduction of alpha-TR in biological system. The obtained results may help the explanation of biological effects of NAF.  相似文献   

6.
Honokiol, a compound extracted from the Chinese medicinal herb Magnolia officinalis, has a strong antioxidant effect on the inhibition of lipid peroxidation in rat heart mitochondria. To investigate the protective effect of honokiol on hepatocytes from peroxidative injury, oxygen consumption and malondialdehyde formation for in vitro iron-induced lipid peroxidation were assayed, and the mitochondrial respiratory function for in vivo ischemia-reperfusion injury were evaluated in rat liver, respectively. The inhibitory effect of honokiol on oxygen consumption and malondialdehyde formation during iron-induced lipid peroxidation in liver mitochondria showed obvious dose-dependent responses with a concentration of 50% inhibition being 2.3 x 10(-7) M and 4.96 x 10(-7) M, respectively, that is, 550 times and 680 times more potent than alpha-tocopherol, respectively. When rat livers were introduced with ischemia 60 min followed by reperfusion for 60 min, and then pretreated with honokiol (10 micrograms/kg BW), the mitochondrial respiratory control ratio (the quotient of the respiration rate of State 3 to that of State 4) and ADP/O ratio from the honokiol-treated livers were significantly higher than those of non-treated livers during reperfusion. The dose-dependent protective effect of honokiol on ischemia-reperfusion injury was 10 microgram-100 micrograms/Kg body weight. We conclude that honokiol is a strong antioxidant and shed insight into clinical implications for protection of hepatocytes from ischemia-reperfusion injury.  相似文献   

7.
Phorbol-myristate acetate (PMA) is commonly used to produce experimental edema and other tissue injuries in the lung. Lung injuries induced by the administration of PMA has been shown to be mediated mainly by neutrophils. Neutrophils recruited to the lower respiratory tract may damage lung tissues by releasing reactive oxygen species, neutral proteases, and lysosomal enzymes. The present study was conducted to investigate whether alpha-tocopherol, entrapped in dipalmitoylphosphatidylcholine liposomes and delivered directly to the lung, could counteract some of the PMA-induced lung injuries. Plain liposomes or alpha-tocopherol containing liposomes (8 mg alpha-tocopherol/kg body weight) were intratracheally instilled into the lungs of rats 24 hr prior to PMA exposure (25 micrograms/kg) and treated rats were killed 3 hr later. Lungs of control animals exposed to PMA developed an increase in lung weight and lipid peroxidation as well as a decrease in lung angiotensin converting enzyme (ACE) and alkaline phosphatase (AKP) activities. PMA treatment also caused an increase in myeloperoxidase (MPO) activity in the lung, suggestive of neutrophil infiltration. Pretreatment of PMA-treated rats with plain liposomes had no effect on PMA-induced injuries. In contrast, pretreatment of rats with liposomal alpha-tocopherol, 24 hr prior to PMA administration, resulted in a significant elevation of pulmonary alpha-tocopherol concentration, accompanied by a concomitant reduction in MPO activity and reversal of PMA-induced changes in lung edema, lipid peroxidation, ACE and AKP activities. These results appear to demonstrate that the intratracheal administration of a liposome-associated lipophilic antioxidant, such as alpha-tocopherol, can significantly ameliorate the toxic effects of reactive oxygen species, putatively released from PMA-stimulated pulmonary target cells and infiltrating neutrophils.  相似文献   

8.
The biological activity of the Alzheimer's disease amyloid beta protein may be related to modulation of membrane lipid peroxidation. The effect of amyloid beta protein fragment 25-35 [A beta(25-35)] on lipid peroxidation was examined in liposomes enriched with polyunsaturated fatty acids. The activity of A beta(25-35) was compared to that of A beta(25-35) with either a scrambled sequence [A beta(25-35)scram] or a peptide sequence in which methionine was replaced with leucine [A beta(25-35) met]. A beta(25-35) inhibited lipid peroxidation in a dose- and time-dependent manner. The antioxidant activity of A beta(25-35) was observed at concentrations as low as 10 nM. The relative antioxidant activities of the amyloid beta protein fragments were as follows: A beta(25-35) > A beta(25-35) met > A beta(25-35)scram. The two more potent peptides intercalated into the membrane hydrocarbon core, as determined by small-angle x-ray diffraction approaches. These findings indicate that the amphiphilic A beta(25-35) peptide inhibits lipid peroxidation at low concentrations as a result of physicochemical interactions with the membrane lipid bilayer.  相似文献   

9.
The compromised optima for high intensity chemiluminescence (CL), using superoxide generators, were all above pH 9.0 for the CL probes luminol and lucigenin. With luminol the optima were at pH 9.0 and 9.4 for the generators KO2 and hypoxanthine/xanthine oxidase (HX/XO), respectively. Lucigenin, with the same generators, produced optima at pH 9.5 and 10.0, respectively. The probe methyl-Cypridina-luciferin analogue (MCLA) produced optima closer to neutral pH, which is preferred for physiological assessments. MCLA had optima at pH 6.0, 8.7 and 9.5 with KO2 and with HX/XO optima at pH 4.8, 6.0, 7.0 and 8.7. When CL was assessed at physiological pH, MCLA observed superoxide radicals with a sensitivity of 100- and 330-fold more than luminol or luicigenin respectively. For singlet oxygen, the sensitivity of MCLA at this pH was 45- and 5465-fold more than for the said probes respectively. H2O2 did not elicit CL between pH 4 and 9.5 with any of the probes and did not influence the production of superoxide or singlet oxygen when co-assessed. Therefore CL could only be obtained when enzymes were used as converters. The optima for the enzyme-conversion system horseradish peroxidase (HRP)/H2O2, and luminol, were at pH 8.0 and 9.2. Lucigenin and HRP/H2O2 also had a biphasic CL profile with optima at pH 7.4 and 9.6. MCLA and HRP/H2O2 had five optima, with the major ones at pH 6.1 and beyond 10. The optima for the myeloperoxidase/H2O system were at 8.6 and beyond 10.0 when luminol and 0.15 mol/L NaBr were used.  相似文献   

10.
The ferrylmyoglobin <==> metmyoglobin redox transitions promoted by hydrogen peroxide and dietary phenolic acids and their potential role in the oxidation of LDL were studied. The use of parinaric acid incorporated in LDL as a probe for radicals (detected by fluorescence quenching of the probe) revealed an oxidative stress inside LDL shortly ( < 1 min) after addition of hydrogen peroxide to metmyoglobin in the aqueous phase outside the particle, reflecting an efficient access of the oxidant to LDL lipids. However, the propagation step of peroxidation only occurs after a lag phase, as detected by the kinetics of oxygen consumption. Triton X-100 decreases but does not suppress the lag phase of oxidation. Addition of metmyoglobin (without peroxide) to LDL was not followed by significant oxidation during the time of the experiment, unless Triton X-100 was present in the medium. When dietary phenolic acids were present in the medium before peroxide addition, an inhibition of parinaric acid fluorescence quenching and oxygen consumption was recorded as a function of concentration and substitution pattern on the phenol ring of the phenolic acids. This was associated with a conversion of ferrylmyoglobin to metmyoglobin. The results indicate that the naturally occurring phenolic acids prevent ferrylmyoglobin-dependent LDL oxidation in a way strongly dependent on the substitution pattern on the phenol ring. Among the phenolic compounds studied, the o-dihydroxy derivatives of cinnamic and benzoic acids (caffeic, chlorogenic, and protocatechuic acids), in a molar ratio of 1 to metmyoglobin, efficiently blocked LDL oxidation initiated by ferrylmyoglobin. Replacement of one OH group from catecholic structure with an H (p-coumaric acid) or methoxy group (ferulic acid) decreased the antioxidant activity. Also, the catechol structure fused in heterocyclic rings with adjacent carbonyl groups (ellagic acid) resulted in decreased antioxidant activity. These observations correlate with the efficiency of phenolic acids to reduce ferrylmyoglobin to metmyoglobin. Therefore, the protection of LDL against oxidation is assigned to the reduction of the oxoferryl moiety of the hemoprotein to the ferric form. Additionally, it is suggested that an access constraint of oxidants plays a minor role in the ferrylmyoglobin-induced oxidation against LDL.  相似文献   

11.
In the present study we show that K+/H+ hydroxyl-containing ionophores lasalocid-A (LAS) and nigericin (NIG) in the nanomolar concentration range, inhibit Fe2+-citrate and 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP)-induced lipid peroxidation in intact rat liver mitochondria and in egg phosphatidylcholine (PC) liposomes containing negatively charged lipids--dicetyl phosphate (DCP) or cardiolipin (CL)--and KCl as the osmotic support. In addition, monensin (MON), a hydroxyl-containing ionophore with higher affinity for Na+ than for K+, promotes a similar effect when NaCl is the osmotic support. The protective effect of the ionophores is not observed when the osmolyte is sucrose. Lipid peroxidation was evidenced by mitochondrial swelling, antimycin A-insensitive O2 consumption, formation of thiobarbituric acid-reactive substances (TBARS), conjugated dienes, and electron paramagnetic resonance (EPR) spectra of an incorporated lipid spin probe. A time-dependent decay of spin label EPR signal is observed as a consequence of lipid peroxidation induced by both inductor systems in liposomes. Nitroxide destruction is inhibited by butylated hydroxytoluene, a known antioxidant, and by the hydroxyl-containing ionophores. In contrast, valinomycin (VAL), which does not possess alcoholic groups, does not display this protective effect. Effective order parameters (Seff), determined from the spectra of an incorporated spin label are larger in the presence of salt and display a small increase upon addition of the ionophores, as a result of the increase of counter ion concentration at the negatively charged bilayer surface. This condition leads to increased formation of the ion-ionophore complex, the membrane binding (uncharged) species. The membrane-incorporated complex is the active species in the lipid peroxidation inhibiting process. Studies in aqueous solution (in the absence of membranes) showed that NIG and LAS, but not VAL, decrease the Fe2+-citrate-induced production of radicals derived from piperazine-based buffers, demonstrating their property as radical scavengers. Both Fe2+-citrate and ABAP promote a much more pronounced decrease of LAS fluorescence in PC/CL liposomes than in dimyristoyl phosphatidylcholine (DMPC, saturated phospholipid)-DCP liposomes, indicating that the ionophore also scavenges lipid peroxyl radicals. A slow decrease of fluorescence is observed in the latter system, for all lipid compositions in sucrose medium, and in the absence of membranes, indicating that the primary radicals stemming from both inductors also attack the ionophore. Altogether, the data lead to the conclusion that the membrane-incorporated cation complexes of NIG, LAS and MON inhibit lipid peroxidation by blocking initiation and propagation reactions in the lipid phase via a free radical scavenging mechanism, very likely due to the presence of alcoholic hydroxyl groups in all three molecules and to the attack of the aromatic moiety of LAS.  相似文献   

12.
Oxidized LDL is implicated in the pathogenesis of atherosclerosis. A widely studied model for oxidation of the lipid in LDL involves Cu2+. Recent studies suggest that Cu2+ may be reduced to Cu1+ by alpha-tocopherol to initiate LDL lipid peroxidation. LDL demonstrates binding sites for Cu2-, but the nature of these binding sites, as well their role in promoting Cu2+ reduction and lipid peroxidation, has not been established. In the current studies, we used diethylpyrocarbonate (DEPC) to modify the histidine residues of apolipoprotein B100, the major protein in LDL. First, we demonstrated that histidine residues were preferentially modified by DEPC under our experimental conditions. Then we monitored the kinetics of Cu(2+)-promoted oxidation of LDL and DEPC-modified LDL. In both cases, the progress curve of lipid peroxidation exhibited a lag phase and a propagation phase. However, when LDL was modified with DEPC, the length of the lag phase was prolonged whereas the rate of lipid peroxidation during the propagation phase was lower. Studies with LDL oxidized by 2,2'-azobis (2-amidinopropane) hydrochloride and phosphatidylcholine liposomes oxidized with hydroxyl radical established that DEPC was not acting simply as a nonspecific inhibitor of lipid peroxidation. DEPC treatment of LDL almost completely inhibited its ability to bind Cu2+. These observations suggest that peroxidation of the lipids in LDL can proceed with normal kinetics only when Cu2+ binds preferentially to sites on apolipoprotein B100 that contain histidine residues. We also compared the kinetics of Cu2+ reduction in the absence and presence of DEPC. There was no effect of DEPC modification on either the rate or extent of Cu2+ reduction by LDL. Therefore LDL is likely to contain a second class of binding sites for Cu2+ that does not involve histidine residues. Thus, LDL appears to contain at least two classes of Cu(2+)-binding sites: histidine containing sites, which are responsible in part for promoting lipid peroxidation during the propagation phase, and sites at which Cu2+ is reduced without binding to histidine.  相似文献   

13.
Red wine polyphenols (RWPPs) were obtained from red wine by absorption and elution from a resin column. Red wine (375 mL/d), white wine (375 mL/d), RWPPs (1 g/d, equivalent to 375 mL red wine/d) in capsules, RWPPs (1 g/d) dissolved in white wine, or a control alcoholic drink (40 g ethanol/d) was given to groups of 6-9 healthy men for 2 wk. Plasma LDL was separated by ultracentrifugation and desalted by dialyzing against a phosphate buffer without EDTA. In the copper-catalyzed peroxidation of LDL (copper-diene assay), the mean lag time increased by 17.8 min after red wine, 14.2 min after RWPP capsules, and 11.7 min after RWPPs in white wine. These groups also showed decreases in thiobarbituric acid-reactive substances, lipid peroxides, and conjugated dienes and increases in plasma and LDL polyphenols. The only change with white wine was an increase in thiobarbituric acid-reactive substances; there were no changes after the control drink. In a second study, RWPPs (1 and 2 g/d) and vitamin E [1000 IU (671 mg)/d] were given for 2 wk. In the copper-diene assay the addition of 10 micromol EDTA/L abolished the increased lag time of 17.7 min seen with 1 g RWPP/d and changed the increased lag time from 13.2 to 4.5 min seen with 2 g RWPP/d. Vitamin E increased lag time by 67.6 min with dialysis without EDTA and by 50.5 min with EDTA. When the column method was used for desalting LDL, all 3 treatments produced an increase in lag time. The failure of some authors to obtain antioxidant effects with the consumption of red wine may be due to the differing techniques.  相似文献   

14.
Ubiquinone (Q) is an essential, lipid soluble, redox component of the mitochondrial respiratory chain. Much evidence suggests that ubiquinol (QH2) functions as an effective antioxidant in a number of membrane and biological systems by preventing peroxidative damage to lipids. It has been proposed that superoxide dismutase (SOD) may protect QH2 form autoxidation by acting either directly as a superoxide-semiquinone oxidoreductase or indirectly by scavenging superoxide. In this study, such an interaction between QH2 and SOD was tested by monitoring the fluorescence of cis-parinaric acid (cPN) incorporated phosphatidylcholine (PC) liposomes. Q6H2 was found to prevent both fluorescence decay and generation of lipid peroxides (LOOH) when peroxidation was initiated by the lipid-soluble azo initiator DAMP, dimethyl 2,2'-azobis (2-methylpropionate), while Q6 or SOD alone had no inhibitory effect. Addition of either SOD or catalase to Q6H2-containing liposomes had little effect on the rate of peroxidation even when incubated in 100% O2. Hence, the autoxidation of QH2 is a competing reaction that reduces the effectiveness of QH2 as an antioxidant and was not slowed by either SOD or catalase. The in vivo interaction of SOD and QH2 was also tested by employing yeast mutant strains harboring deletions in either CuZnSOD and/or MnSOD. The sod mutant yeast strains contained the same percent Q6H2 per cell as wild-type cells. These results indicate that the autoxidation of QH2 is independent of SOD.  相似文献   

15.
Considerable interest has been raised concerning the use of natural compounds in preventing skin aging and photoaging. In the idea that the combined action of agents increasing epidermal turnover with antioxidants could be advantageous in cosmetic and therapeutic treatments, we first investigated if alpha-glycolic acid affected or prevented the antioxidant activity of vitamin E and of melatonin, two compounds found beneficial as topical photoprotectant. Assays were carried out in vitro either in a biomimetic liposomal system, or in human skin homogenates. Lipid peroxidation was monitored spectrophotometrically by the time course of lipid hydroperoxide production in liposomes and by formation of TBA reactive substances (TBARS) in skin homogenates. Glycolic acid, at 25 microM to 1 mM, showed a mild, concentration-dependent antioxidant effect in liposomes, as evaluated by a slight decrease of the peroxidation rate, while, at 1 mM, reduced TBARS production in skin homogenates by 14%. Combinations of either vitamin E or melatonin with glycolic acid, in a 1:5 to 1:200 molar ratio, resulted in a clear synergistic protection of liposomes, more evident for the combination of glycolic acid with vitamin E. An amount of synergism up to 250% and up to 80% was evaluated with vitamin E and melatonin, respectively. Consumption rate of vitamin E during peroxidation of liposomes, in the absence or in the presence of glycolic acid, suggests that regeneration of vitamin E may in part explain the observed synergism. Synergistic antioxidant activity between vitamin E and glycolic acid was also observed in skin homogenates, whereas the effect of glycolic acid on the antioxidant activity of melatonin appeared additive. However, the combination of these three compounds inhibited TBARS production almost completely. Our data provide evidence that glycolic acid can strongly potentiate the antioxidant action of melatonin and vitamin E. This may suggest the advantage of combining alpha-glycolic acid with these antioxidants in skin designed preparations, both to improve penetration and availability of antioxidants to epidermal layers and to enhance their protective potential.  相似文献   

16.
Proteoglycans (PGs) from bovine cornea showed a protective effect on liposome peroxidation induced by Fe2+. Both chondroitin sulfate, dermatan sulfate-containing PG (CS,DS-PG) and keratan sulfate-containing PG (KS-PG) inhibited thiobarbituric acid-reactive substance formation when incubated with liposomes and Fe2+, CS,DS-PG being more effective than KS-PG. The native structure of PGs contributed markedly to antioxidant activity. Papain digestion of core protein reduced the protective effect of CS,DS-PG, whereas it abolished completely that of KS-PG. Apparently only hexuronate-containing glycosaminoglycan (GAG) chains may exert a significant antioxidant activity and this was confirmed using standard GAGs. Quasielastic laser light scattering was used to evaluate the structural consequence of peroxidative damage induced by Fenton reagent on liposomes. After exposure to the free-radical-generating system, a bimodal distribution of liposomes was observed, probably depending on the loss of native structure and fragmentation. Both CS,DS-PG and KS-PG prevented liposome breakdown. Again, free KS chains were ineffective against liposome damage, whereas DS and CS maintained the normal distribution of liposome size. These data support the hypothesis that PGs may represent part of the antioxidant mechanisms of organisms and suggest that modifications of PG content and/or composition might affect tissue sensitivity to oxidative stress.  相似文献   

17.
beta-Carotene and other carotenoids are widely regarded as biological antioxidants. However, recent clinical trials indicate that beta-carotene supplements are not effective in disease prevention and raise questions about the biological significance of carotenoid antioxidant actions. To further explore this issue, we have reevaluated the antioxidant actions of beta-carotene in liposomal and biological membrane systems. In dilinoleoylphosphatidylcholine liposomes in which 0.35 mol % beta-carotene was incorporated into the bilayer during liposome preparation, the carotenoid inhibited lipid peroxidation initiated by 10 mm azobis[amidinopropane HCl] (AAPH). In carotenoid-free liposome suspensions to which the same amount of beta-carotene was added, no antioxidant effect was observed. Supplementation of rat liver microsomes with beta-carotene in vitro yielded microsomes containing 1.7 nmol beta-carotene mg-1 and 0.16 nmol alpha-tocopherol mg-1 microsomal protein. In beta-carotene supplemented microsomes incubated with 10 mm AAPH under an air atmosphere, lipid peroxidation did not occur until alpha-tocopherol was depleted by approximately 60%. beta-Carotene exerted no apparent antioxidant effect and was not significantly depleted in the incubations. Similar results were obtained when the incubation was done at 3.8 torr O2. In liver microsomes from Mongolian gerbils fed beta-carotene-supplemented diets, beta-carotene levels were 16-37% of alpha-tocopherol levels. The kinetics of AAPH-induced lipid peroxidation were no different in beta-carotene-supplemented microsomes than in microsomes from unsupplemented animals, although the kinetics of beta-carotene and alpha-tocopherol depletion were similar. The results indicate that beta-carotene is ineffective as an antioxidant when added to preformed lipid bilayer membranes and that alpha-tocopherol is a much more effective membrane antioxidant than beta-carotene, regardless of the method of carotenoid-membrane incorporation. These results support a reevaluation of the proposed antioxidant role for beta-carotene in biological membranes.  相似文献   

18.
The aim of the present work was to determine the likelihood of lipid peroxidation in the lungs of rats subjected to neuroleptanalgesia and its components. In particular, the effect of fentanyl, droperidol, a nitrous oxide/oxygen mixture when used separately or in combination, on the lung level of lipid peroxidation was investigated. The in vitro antioxidant properties of fentanyl and droperidol were also tested. Lipid peroxidation was evidenced by the endogenously generated conjugated dienes and fluorescent products of lipid peroxidation and the decrease in lung vitamin E content. It was found that fentanyl and droperidol, used separately or in combination, did not induce lipid peroxidation in the rat lung, while the exposure of rats for 120 min to a nitrous oxide/oxygen mixture (2:1 v/v) led to well-expressed peroxidation. The (N2O + O2)-pro-oxidant action was significantly inhibited in rats previously injected with fentanyl and/or droperidol. The results show that the application of fentanyl, droperidol and (N2O + O2), as in neuroleptanalgesia, ensures minimal lipid peroxidation in the lung. In addition, we found that fentanyl and droperidol were able to inhibit the Fe(2+)-catalysed lipid peroxidation in lung homogenate. We speculate that the inhibitory effect of fentanyl and/or droperidol on the (N2O + O2)-induced lipid peroxidation in the rat lung may be caused directly by their antioxidant properties. However, another explanation seems to be possible. The free radicals that are produced during the metabolism of fentanyl and droperidol may react with the radicals generated during the one-electron reduction of nitrous oxide. Such reactions will obviously reduce the free radical concentration in the organism and, hence, the likelihood of initiating lipid peroxidation.  相似文献   

19.
Heparin (HE) exhibited a protective effect on liposome peroxidation induced by Fe2+ and Cu2+, decreasing the formation of both conjugated dienes and thiobarbituric acid reactive substances (TBARS) in a dose-dependent manner. The antioxidant activity was more relevant in the oxidizing system employing Fe2+ and H2O2 and generating the highly reactive OH radical. The analysis of liposome size distribution by quasielastic laser light scattering showed that: (1) the native structure of the particles was completely lost after exposure to Fenton reagent; (2) the presence of HE in the reaction mixture completely prevented the peroxidative damage on liposomes. Thus, HE acts as an antioxidant factor on membrane lipid bilayer. This suggests that HE, released from mast-cell granules during inflammatory processes, might locally protect the cell membrane from the oxidative injuries.  相似文献   

20.
The effects of Al3+ on Fe(2+)-induced lipid peroxidation in phospholipid liposomes consisting of phosphatidylcholine (PC) and phosphatidylserine (PS) were examined under acidic conditions. The stimulatory effect of Al3+ on Fe(2+)-induced lipid peroxidation in the liposomes showed a biphasic response against pH variation, and the maximum stimulation was observed around pH 6.0. In addition, it was found that the stimulatory effect of Al3+ on the lipid peroxidation was dependent on the proportion of PS in the liposomes. On the other hand, the lipid peroxidation in PC liposomes was not stimulated by the addition of Al3+. From these findings, it is suggested that the Al3+ effect on Fe(2+)-induced lipid peroxidation under acidic conditions is largely dependent on the phospholipid composition. Trivalent cations such as Tb3+ and Ga3+ also stimulated Fe(2+)-induced lipid peroxidation in PC/PS liposomes under acidic conditions, but divalent cations (Zn2+ and Mn2+) showed no stimulatory effect. The extents of Fe2+ disappearance and Fe3+ formation during the reaction were enhanced by the addition of Al3+ or Ga2+, but Tb3+ had no effect on Fe2+ disappearance. The results with 1,6-diphenyl-1,3,5-hexatriene (DPH) showed that the fluorescence anisotropy of DPH-labeled PC/PS liposomes under acidic conditions was increased by the addition of Al3+. Furthermore, there is a relation between the extents of the fluorescence anisotropy of the complex and TBARS production. In contrast, the fluorescence anisotropy of DPH molecules embedded in PC liposomes was not changed by the addition of Al3+. Based on these results, a possible mechanism of the stimulatory effect of Al3+ on Fe(2+)-induced lipid peroxidation under acidic conditions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号