首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes arun-time bytecode specialization (BCS) technique that analyzes programs and generates specialized programs at run-time in an intermediate language. By using an intermediate language for code generation, a back-end system canoptimize the specialized programs after specialization. The system uses Java virtual machine language (JVML) as the intermediate language, which allows the system to easily achieve practicalportability and to use existing sophisticated just-in-time (JIT) compilers as its back-end. The binding-time analysis algorithm is based on a type system, and covers a non-object-oriented subset of JVML. The specializer generates programs on a per-instruction basis, and can performmethod inlining at run-time. Our performance measurements show that a non-trivial application program specialized at run-time by BCS runs approximately 3–4 times faster than the unspecialized one. Despite the large overhead of JIT compilation of specialized code, we observed that the overall performance of the application can be improved. This paper is an extended version of “A Portable Approach to Generating Optimized Specialized Code”, inProceedings of Second Symposium on Programs as Data Objects (PADO-II), Lecture Notes in Computer Science, vol. 2053, pp. 138–154, Aarhus, Denmark, May 2001.23) Hidehiko Masuhara, D.Sc.: He is an Assistant Professor at Department of Graphics and Computer Science, Graduate School of Arts and Sciences, University of Tokyo. He received his B.S., M.S. and D.Sc. degrees from Department of Information Science, University of Tokyo in 1992, 1994, and 1999, respectively. His research interests are in programming languages, especially in mechanisms to support flexible and efficient computation such as dynamic optimization and reflection. He received the best-paper award from Information Processing Society of Japan in 1996. Akinori Yonezawa, Ph.D.: He is a Professor of computer science at Department of Computer Science, University of Tokyo. He received Ph.D. in Computer Science from the Massachusetts Institute of Technology in 1977. His current major research interests are in the areas of concurrent/parallel computation models, programming languages, object-oriented computing, and distributed computing. He is the designer of an object-oriented concurrent language ABCL/1 and the editor of several books and served as an associate editor of ACM Transaction of Programming Languages and Systems (TOPLAS). Since 1998, he has been an ACM Fellow.  相似文献   

2.
3.
A high performance communication facility, called theGigaE PM, has been designed and implemented for parallel applications on clusters of computers using a Gigabit Ethernet. The GigaE PM provides not only a reliable high bandwidth and low latency communication, but also supports existing network protocols such as TCP/IP. A reliable communication mechanism for a parallel application is implemented on the firmware on a NIC while existing network protocols are handled by an operating system kernel. A prototype system has been implemented using an Essential Communications Gigabit Ethernet card. The performance results show that a 58.3 μs round trip time for a four byte user message, and 56.7 MBytes/sec bandwidth for a 1,468 byte message have been achieved on Intel Pentium II 400 MHz PCs. We have implemented MPICH-PM on top of the GigaE PM, and evaluated the NAS parallel benchmark performance. The results show that the IS class S performance on the GigaE PM is 1.8 times faster than that on TCP/IP. Shinji Sumimoto: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. He received BS degree in electrical engineering from Doshisha University. His research interest include parallel and distributed systems, real-time systems, and high performance communication facilities. He is a member of Information Processing Society of Japan. Hiroshi Tezuka: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. His research interests include real-time systems and operating system kernel. He is a member of the Information Processing Society of Japan, and Japan Society for Software Science and Technology. Atsushi Hori, Ph.D.: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. His current research interests include parallel operating system. He received B.S. and M.S. degrees in Electrical Engineering from Waseda University, and received Ph.D. from the University of Tokyo. He worked as a researcher in Mitsubishi Research Institute from 1981 to 1992. Hiroshi Harada: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. His research interests include distributed/parallel systems and distributed shared memory. He received BS degree in physics from Science University of Tokyo. He is a member of ACM and Information Processing Society of Japan. Toshiyuki Takahashi: He is a Researcher at Real World Computing Partnership since 1998. He received his B.S. and M.S. from the Department of Information Sciences of Science University of Tokyo in 1993 and 1995. He was a student of the Information Science Department of the University of Tokyo from 1995 to 1998. His current interests are in meta-level architecture for programming languages and high-performance software technologies. He is a member of Information Processing Society of Japan. Yutaka Ishikawa, Ph.D.: He is the chief of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. He is currently temporary retirement from Electrotechnical Laboratory, MITI. His research interests include distributed/parallel systems, object-oriented programming languages, and real-time systems. He received the B.S., M.S. and Ph.D degrees in electrical engineering from Keio University. He is a member of the IEEE Computer Society, ACM, Information Processing Society of Japan, and Japan Society for Software Science and Technology.  相似文献   

4.
This paper presents a novel method for user classification in adaptive systems based on rough classification. Adaptive systems could be used in many areas, for example in a user interface construction or e-Learning environments for learning strategy selection. In this paper the adaptation of web-based system user interface is presented. The goal of rough user classification is to select the most essential attributes and their values that group together users who are very much alike concerning the system logic. In order to group users we exploit their usage data taken from the user model of the adaptive web-based system user interface. We presented three basic problems for attribute selection that generates the following partitions: that is included, that includes and that is the closest to the given partition. Ngoc Thanh Nguyen, Ph.D., D.Sc.: He currently works as an associate professor at the Faculty of Computer Science and Management, Wroclaw University of Technology in Poland. He received his diplomas of M.Sc, Ph.D. and D.Sc. in Computer Science in 1986, 1989 and 2002, respectively. Actually, he is working on intelligent technologies for conflict resolution and inconsistent knowledge processing and e-learning methods. His teaching interests consist of database systems and distributed systems. He is a co-editor of 4 special issues in international journals, author of 3 monographs, editor of one book and about 110 other publications (book chapters, journal and refereed conference papers). He is an associate editor of the following journals: “International Journal of Computer Science & Application”; “Journal of Information Knowledge System Management”; and “International Journal of Knowledge-Based & Intelligent Engineering Systems”. He is a member of societies: ACM, IFIP WG 7.2, ISAI, KES International, and WIC. Janusz Sobecki, Ph.D.: He is an Assistant Professor in Institute of Applied Informatics (IAI) at Wroclaw University of Technology (WUT). He received his M. Sc. in Computer Science from Faculty of Computer Science and Management at WUT in 1986 and Ph.D. in Computer Science from Faculty of Electronics at WUT in 1994. For 1986–1996 he was an Assistant at the Department of Information Systems (DIS) at WUT. For 1988–1996 he was also a head of the laboratory at DIS. For 1996–2004 he was an Assistant Professor in DIS and since fall of 2004 at IAI, both at WUT. His research interests include information retrieval, multimedia information systems, system usability and recommender systems. He is on the editorial board of New Generation Computing and was a co-editor of two journal special issues. He is a member of American Association of Machinery.  相似文献   

5.
In 1996, we began a research project on molecular computers under the new program “Research for the Future” funded by the Japan Society for the Promotion of Science. In this paper, we first summarize the research that has been completed in the field of DNA computing and the research problems that must be overcome. We also report some achievements of our research project in the first two years. We then propose a new direction in research towardsautonomous molecular computers, and describe the author’s work on the implementation of state machines using DNA molecules. We finally discuss the future perspectives on molecular computing based on our experiences. Masami Hagiya, Ph.D.: He received M.Sc. from University of Tokyo in 1982, and D.Sc. from Kyoto University in 1988. After the years in Research Institute for Mathematical Sciences, Kyoto University, he returned to University of Tokyo in 1992. He has been working on programming languages, verification and synthesis of programs, and automated deduction. In addition, he is interested in bio-computing since he was involved in the human genome project of Japan. He is currently organizing a project on molecular computing under the “Research for the Future” program of JSPS.  相似文献   

6.
Privacy-preserving SVM classification   总被引:2,自引:2,他引:0  
Traditional Data Mining and Knowledge Discovery algorithms assume free access to data, either at a centralized location or in federated form. Increasingly, privacy and security concerns restrict this access, thus derailing data mining projects. What is required is distributed knowledge discovery that is sensitive to this problem. The key is to obtain valid results, while providing guarantees on the nondisclosure of data. Support vector machine classification is one of the most widely used classification methodologies in data mining and machine learning. It is based on solid theoretical foundations and has wide practical application. This paper proposes a privacy-preserving solution for support vector machine (SVM) classification, PP-SVM for short. Our solution constructs the global SVM classification model from data distributed at multiple parties, without disclosing the data of each party to others. Solutions are sketched out for data that is vertically, horizontally, or even arbitrarily partitioned. We quantify the security and efficiency of the proposed method, and highlight future challenges. Jaideep Vaidya received the Bachelor’s degree in Computer Engineering from the University of Mumbai. He received the Master’s and the Ph.D. degrees in Computer Science from Purdue University. He is an Assistant Professor in the Management Science and Information Systems Department at Rutgers University. His research interests include data mining and analysis, information security, and privacy. He has received best paper awards for papers in ICDE and SIDKDD. He is a Member of the IEEE Computer Society and the ACM. Hwanjo Yu received the Ph.D. degree in Computer Science in 2004 from the University of Illinois at Urbana-Champaign. He is an Assistant Professor in the Department of Computer Science at the University of Iowa. His research interests include data mining, machine learning, database, and information systems. He is an Associate Editor of Neurocomputing and served on the NSF Panel in 2006. He has served on the program committees of 2005 ACM SAC on Data Mining track, 2005 and 2006 IEEE ICDM, 2006 ACM CIKM, and 2006 SIAM Data Mining. Xiaoqian Jiang received the B.S. degree in Computer Science from Shanghai Maritime University, Shanghai, 2003. He received the M.C.S. degree in Computer Science from the University of Iowa, Iowa City, 2005. Currently, he is pursuing a Ph.D. degree from the School of Computer Science, Carnegie Mellon University. His research interests are computer vision, machine learning, data mining, and privacy protection technologies.  相似文献   

7.
Goal-directed evaluation, as embodied in Icon and Snobol, is built on the notions of backtracking and of generating successive results, and therefore it has always been something of a challenge to specify and implement. In this article, we address this challenge using computational monads and partial evaluation. We consider a subset of Icon and we specify it with a monadic semantics and a list monad. We then consider a spectrum of monads that also fit the bill, and we relate them to each other. For example, we derive a continuation monad as a Church encoding of the list monad. The resulting semantics coincides with Gudeman’s continuation semantics of Icon. We then compile Icon programs by specializing their interpreter (i.e., by using the first Futamura projection), using type-directed partial evaluation. Through various back ends, including a run-time code generator, we generate ML code, C code, and OCaml byte code. Binding-time analysis and partial evaluation of the continuation-based interpreter automatically give rise to C programs that coincide with the result of Proebsting’s optimized compiler. Basic Research in Computer Science (www.brics. dk), funded by the Danish National Research Foundation. Olivier Danvy, Ph.D., Habilitation: He is an Associate Professor at the Department of Computer Science at the University of Aarhus, in Denmark. He obtained his Ph.D. degree in 1986 and his Habilitation in 1993 from the Université Pierre et Marie Curie (Paris VI), France. His research interests are in Programming Languages in general and in Partial Evaluation and Continuations in particular. He has published over 75 refereed research papers and edited several proceedings. He has both served on and chaired program committees of scientific meetings in the area of Programming Languages. He is presently chairing the PEPM steering committee at ACM SIGPLAN and serving as external reviewer in computer science for the Danish Universities, as board member in the BRICS PhD School, and as co-Editor-in-Chief of the journal Higher-Order and Symbolic Computation (http://www.wkap.nl/journals/hosc). Bernd Grobauer, M.Sc.: He is a Ph.D. student at the BRICS International Ph.D. school, University of Aarhus, Denmark, and will graduate in the summer of 2001. He obtained his Masters degree from the Munich University of Technology (TUM), Germany. His research interests are in formal methods (especially theorem proving) and programming languages (semantics of programming languages, program analysis, program transformation, types). He serves as editorial assistant for the journal Higher-Order and Symbolic Computation and as chairman of the BRICS Juniorklubben. Morten Rhiger, M.Sc.: He is a Ph.D. student at the BRICS International Ph.D. school, University of Aarhus, Denmark, and will graduate in the summer of 2001. He obtained his Masters degree from the University of Aarhus in 1998. His research interests are in the semantics and implementation of programming languages.  相似文献   

8.
In this paper we introduce the logic programming languageDisjunctive Chronolog which combines the programming paradigms of temporal and disjunctive logic programming. Disjunctive Chronolog is capable of expressing dynamic behaviour as well as uncertainty, two notions that are very common in a variety of real systems. We present the minimal temporal model semantics and the fixpoint semantics for the new programming language and demonstrate their equivalence. We also show how proof procedures developed for disjunctive logic programs can be easily extended to apply to Disjunctive Chronolog programs. Manolis Gergatsoulis, Ph.D.: He received his B.Sc. in Physics in 1983, the M.Sc. and the Ph.D. degrees in Computer Science in 1986 and 1995 respectively all from the University of Athens, Greece. Since 1996 he is a Research Associate in the Institute of Informatics and Telecommunications, NCSR ‘Demokritos’, Athens. His research interests include logic and temporal programming, program transformations and synthesis, as well as theory of programming languages. Panagiotis Rondogiannis, Ph.D.: He received his B.Sc. from the Department of Computer Engineering and Informatics, University of Patras, Greece, in 1989, and his M.Sc. and Ph.D. from the Department of Computer Science, University of Victoria, Canada, in 1991 and 1994 respectively. From 1995 to 1996 he served in the Greek army. From 1996 to 1997 he was a visiting professor in the Department of Computer Science, University of Ioannina, Greece, and since 1997 he is a Lecturer in the same Department. In January 2000 he was elected Assistant Professor in the Department of Informatics at the University of Athens. His research interests include functional, logic and temporal programming, as well as theory of programming languages. Themis Panayiotopoulos, Ph.D.: He received his Diploma on Electrical Engineering from the Department of Electrical Engineering, National Technical Univesity of Athens, in 1984, and his Ph.D. on Artificial Intelligence from the above mentioned department in 1989. From 1991 to 1994 he was a visiting professor at the Department of Mathematics, University of the Aegean, Samos, Greece and a Research Associate at the Institute of Informatics and Telecommunications of “Democritos” National Research Center. Since 1995 he is an Assistant Prof. at the Department of Computer Science, University of Piraeus. His research interests include temporal programming, logic programming, expert systems and intelligent agent architectures.  相似文献   

9.
Attribute grammars (AGs) are a suitable formalism for the development of language processing systems. However, for languages including unrestricted labeled jumps, such as “goto” in C, the optimizers in compilers are difficult to write in AGs. This is due to two problems that few previous researchers could deal with simultaneously, i.e., references of attribute values on distant nodes and circularity in attribute dependency. This paper proposescircular remote attribute grammars (CRAGs), an extension of AGs that allows (1) direct relations between two distant attribute instances through pointers referring to other nodes in the derivation tree, and (2) circular dependencies, under certain conditions including those that arise from remote references. This extension gives AG programmers a natural means of describing language processors and programming environments for languages that include any type of jump structure. We also show a method of constructing an efficient evaluator for CRAGs called amostly static evaluator. The performance of the proposed evaluator has been measured and compared with dynamic and static evaluators. Akira Sasaki: He is a research fellow of the Advanced Clinical Research Center in the Institute of Medical Science at the University of Tokyo. He received his BSc and MSc from Tokyo Institute of Technology, Japan, in 1994 and 1996, respectively. His research interests include programming languages, programming language processors and programming environments, especially compiler compilers, attribute grammars and systematic debugging. He is a member of the Japan Society for Software Science and Technology. Masataka Sassa, D.Sc.: He is Professor of Computer Science at Tokyo Institute of Technology. He received his BSc, MSc and DSc from the University of Tokyo, Japan, in 1970, 1972 and 1978, respectively. His research interests include programming languages, programming language processors and programming environments, currently he is focusing on compiler optimization, compiler infrastructure, attribute grammars and systematic debugging. He is a member of the ACM, IEEE Computer Society, Japan Society for Software Science and Technology, and Information Processing Society of Japan.  相似文献   

10.
Electronic Commerce (EC) is a promising field for applying agent and Artificial Intelligence technologies. In this article, we give an overview of the trends of Internet auctions and agent-mediated Web commerce. We describe the theoretical backgrounds of auction protocols and introduce several Internet auction sites. Furthermore, we describe various activities aimed toward utilizing agent technologies in EC and the trends in standardization efforts on agent technologies. Makoto Yokoo, Ph.D.: He received the B.E. and M.E. degrees in electrical engineering, in 1984 and 1986, respectively, from the University of Tokyo, Japan, and the Ph.D. degree in information and communication engineering in 1995 from the University of Tokyo, Japan. He is currently a distinguished technical member in NTT Communication Science Laboratories, Kyoto, Japan. He was a visiting research scientist at the Department of Electrical Engineering and Computer Science, the University of Michigan, Ann Arbor, from 1990 to 1991. His current research interests include multi-agent systems, search, and constraint satisfaction. Satoru Fujita, D.Eng.: He received his B.E. and M.E. degrees in electronic engineering from the University of Tokyo in 1984 and 1986, respectively. He also received his D.Eng. from the University of Tokyo in 1989 for his research on context comprehension in natural language understanding. He joined NEC Corporation in 1989, and is now a principal researcher of Internet Systems Research Laboratories of NEC. He is engaged in research on mobile agents, distributed systems and Web services.  相似文献   

11.
12.
This paper presents and empirically evaluates a generational real-time garbage collection scheme, which is based on combining Baker’s real-time scheme with a simple generational scheme by Andrew W. Appel. Real World Computing Partnership. Khayri A. M. Ali, Ph.D.: He currently works as Dean of the Faculty of Computer Science at October University for Modern Sciences and Arts, Egypt. He received his B. Sc. (1970) in Electronics, his M. Sc. (1977) in Automatic Control, both from Egypt. He received his Ph.D. in Computer Systems from the Royal Institute of Technology, Stockholm, in 1984. His research interests are in developing parallel and distributed logic, functional, object-oriented, and constraints programming systems.  相似文献   

13.
This paper describescoordination relations, that are relations that induce the presence or absence of data on some dataspaces from the presence or absence of other data on other dataspaces. To that end we build upon previous work on the μLog model and show that the coordination relations can be easily incorporated in it. This is achieved, on the one hand, by means of novel auxiliary operations, not classically used in Linda-like languages, and, on the other hand, by a translation technique reducing the extended μLog model to the core model augmented with the auxiliary operations. Among the most significant ones are multiple read and get operations on a blackboard, readall and getall operations, and tests for the absence of data on blackboards. Although simple, the form of coordination relations we propose is quite powerful as evidenced by a few examples including relations coming from the object-oriented paradigm such as inheritance relations. Jean-Marie Jacquet, Ph.D.: He is Professor at the Institute of Informatics at the University of Namur, Belgium, and, at an honorary title, Research Associate of the Belgian National Fund for Scientific Research. He obtained a Master in Mathematics from the University of Liège in 1982, a Master in Computer Science from the University of Namur in 1984 and a Ph.D. in Computer Science from the University of Namur in 1989. His research interest are in Programming Languages and Coordination models. He has served as a reviewer and program committee member of several conferences. Koen de Bosschere, Ph.D.: He holds the degree of master of Science in Engineering of the Ghent University, and a Ph.D. from the same University. He is currently research associate with the Fund for Scientific Research — Flanders and senior lecturer at the Ghent University, where he teaches courses on computer architecture, operating systems and declarative programming languages. His research interests are coordination in parallel logic programming, computer architecture and systems software.  相似文献   

14.
In typical software development, a software reliability growth model (SRGM) is applied in each testing activity to determine the time to finish the testing. However, there are some cases in which the SRGM does not work correctly. That is, the SRGM sometimes mistakes quality for poor quality products. In order to tackle this problem, we focussed on the trend of time series data of software defects among successive testing phases and tried to estimate software quality using the trend. First, we investigate the characteristics of the time series data on the detected faults by observing the change of the number of detected faults. Using the rank correlation coefficient, the data are classified into four kinds of trends. Next, with the intention of estimating software quality, we investigate the relationship between the trends of the time series data and software quality. Here, software quality is defined by the number of faults detected during six months after shipment. Finally, we find a relationship between the trends and metrics data collected in the software design phase. Using logistic regression, we statistically show that two review metrics in the design and coding phase can determine the trend. Sousuke Amasakireceived the B.E. degree in Information and Computer Sciences from Okayama Prefectural University, Japan, in 2000 and the M.E. degree in Information and Computer Sciences from Graduate School of Information Science and Technology, Osaka University, Japan, in 2003. He has been in Ph.D. course of Graduate School of Information Science and Technology at Osaka University. His interests include the software process and the software quality assurance technique. He is a student member of IEEE and ACM. Takashi Yoshitomireceived the B.E. degree in Information and Computer Sciences from Osaka University, Japan, in 2002. He has been working for Hitachi Software Engineering Co., Ltd. Osamu Mizunoreceived the B.E., M.E., and Ph.D. degrees in Information and Computer Sciences from Osaka University, Japan, in 1996, 1998, and 2001, respectively. He is an Assistant Professor of the Graduate School of Information Science and Technology at Osaka University. His research interests include the improvement technique of the software process and the software risk management technique. He is a member of IEEE. Yasunari Takagireceived the B.E. degree in Information and Computer Science, from Nagoya Institute of Technology, Japan, in 1985. He has been working for OMRON Corporation. He has been also in Ph.D. course of Graduate School of Information Science and Technology at Osaka University since 2002. Tohru Kikunoreceived the B.E., M.Sc., and Ph.D. degrees in Electrical Engineering from Osaka University, Japan, in 1970, 1972, and 1975, respectively. He joined Hiroshima University from 1975 to 1987. Since 1990, he has been a Professor of the Department of Information and Computer Sciences at Osaka University. His research interests include the analysis and design of fault-tolerant systems, the quantitative evaluation of software development processes, and the design of procedures for testing communication protocols. He is a member of IEEE and ACM.  相似文献   

15.
In this paper we describe deployment of most important life sciences applications on the grid. The build grid is heterogenous and consist of systems of different architecture as well as operating systems and various middleware. We have used UNICORE infrastructure as framework for development dedicated user interface to the number of existing computational chemistry codes and molecular biology databases. Developed solution allows for access to the resources provided with UNICORE as well as Globus with exactly the same interface which gives access to the general grid functionality such as single login, job submission and control mechanism. Jarosław Wypychowski: He is a student at the Faculty of Mathematics and Computer Science, Warsaw University, Poland. He is involved in the development of grid tools. He has been working as programmer in the private company. Jarosław Pytliński, M.Sc.: He received his M.Sc. in 2002 from Department of Mathematic and Computer Science of Nicolaus Copernicus University in Torun. His thesis on “Quantum Chemistry Computations in Grid Environment” was distincted in XIX Polish Contest for the best M.Sc. Thesis of Computer Science. He also worked in Laboratory of High Performance Systems at UCI, Torun. His interests are Artificial Intelligence and GRID technology. Łukasz Skorwider, M.Sc.: He is programmer in the private pharmaceutical company. He obtained M.Sc. degree from the Faculty of Mathematics and Computer Science N. Copernicus University. As graduate student he was involved in the development of grid tools for drug design. His private and professional interest is Internet technology. Mirosław Nazaruk, M.Sc.: He is a senior computer and network administrator at ICM Warsaw University. He provides professional support for the users of the high performance facilities located at the ICM. He obtained M.Sc. in Computer Science from Warsaw University in 1991. Before joining ICM, he was a member of technical staff at Institute of Applied Mathematics, Warsaw University. Krzysztof Benedyczak: He is a student at the Faculty of Mathematics and Computer Science, N. Copernicus University, Torun, Poland. He is involved in the development of grid tools. Michał Wroński: He is a student at the Faculty of Mathematics and Computer Science, N. Copernicus University, Torun, Poland. He is involved in the development of grid tools. Piotr Bała, Ph.D.: He is an adiunkt at Faculty of Mathematics and Computer Science N. Copernicus University, Torun, Poland, and tightly cooperates with ICM, Warsaw University. He obtained Ph.D. in Physics in 1993 in Institute of Physics, N. Copernicus University and in 2000 habilitation in physics. From 2001 he was appointed director of Laboratory of Parallel and Distributed Processing at Faculty of Mathematics, N. Copernicus University. His main research interest is development and application of Quantum-Classical Molecular Dynamics and Approximated Valence Bond method to study of enzymatic reactions in biological systems. In the last few years, he has been involved in development of parallel and grid tools for large scale scientific applications.  相似文献   

16.
When dealing with long video data, the task of identifying and indexing all meaningful subintervals that become answers to some queries is infeasible. It is infeasible not only when done by hand but even when done by using latest automatic video indexing techniques. Whether manually or automatically, it is only fragmentary video intervals that we can identify in advance of any database usage. Our goal is to develop a framework for retrieving meaningful intervals from such fragmentarily indexed video data. We propose a set of algebraic operations that includes ourglue join operations, with which we can dynamically synthesize all the intervals that are conceivably relevant to a given query. In most cases, since these operations also produce irrelevant intervals, we also define variousselection operations that are useful in excluding them from the answer set. We also show the algebraic properties possessed by those operations, which establish the basis of an algebraic query optimization. Katsumi Tanaka, D. Eng.: He received his B.E., M.E., and D.Eng. degrees in information science from Kyoto University, in 1974, 1976, and 1981, respectively. Since 1994, he is a professor of the Department of Computer and Systems Engineering and since 1997, he is a professor of the Division of Information and Media Sciences, Graduate School of Science and Technology, Kobe University. His research interests include object-oriented, multimedia and historical databases abd multimedia information systems. He is a member of the ACM, IEEE Computer Society and the Information Processing Society of Japan. Keishi Tajima, D.Sci.: He received his B.S, M.S., and D.S. from the department of information science of University of Tokyo in 1991, 1993, and 1996 respectively. Since 1996, he is a Research Associate in the Department of Computer and Systems Engineering at Kobe University. His research interests include data models for non-traditional database systems and their query languages. He is a member of ACM, ACM SIGMOD, Information Processing Society of Japan (IPSJ), and Japan Society for Software Science and Technology (JSSST). Takashi Sogo, M.Eng.: He received B.E. and M.E. from the Department of Computer and Systems Engineering, Kobe University in 1998 and 2000, respectively. Currently, he is with USAC Systems Co. His research interests include video database systems. Sujeet Pradhan, D.Eng.: He received his BE in Mechanical Engineering from the University of Rajasthan, India in 1988, MS in Instrumentation Engineering in 1995 and Ph.D. in Intelligence Science in 1999 from Kobe University, Japan. Since 1999 May, he is a lecturer of the Department of Computer Science and Mathematics at Kurashiki University of Science and the Arts, Japan. A JSPS (Japan Society for the Promotion of Science) Research Fellow during the period between 1997 and 1999, his research interests include video databases, multimedia authoring, prototypebased languages and semi-structured databases. Dr. Pradhan is a member of Information Processing Society of Japan.  相似文献   

17.
A logic-based approach to the specification of active database functionality is presented which not only endows active databases with a well-defined and well-understood formal semantics, but also tightly integrates them with deductive databases. The problem of endowing deductive databases with rule-based active behaviour has been addressed in different ways. Typical approaches include accounting for active behaviour by extending the operational semantics of deductive databases, or, conversely, accounting for deductive capabilities by constraining the operational semantics of active databases. The main contribution of the paper is an alternative approach in which a class of active databases is defined whose operational semantics is naturally integrated with the operational semantics of deductive databases without either of them strictly subsuming the other. The approach is demonstrated via the formalization of the syntax and semantics of an active-rule language that can be smoothly incorporated into existing deductive databases, due to the fact that the standard formalization of deductive databases is reused, rather than altered or extended. One distinctive feature of the paper is its use of ahistory, as defined in the Kowalski-Sergot event-calculus, to define event occurrences, database states and actions on these. This has proved to be a suitable foundation for a comprehensive logical account of the concept set underpinning active databases. The paper thus contributes a logical perspective to the ongoing task of developing a formal theory of active databases. Alvaro Adolfo Antunes Fernandes, Ph.D.: He received a B.Sc. in Economics (Rio de Janeiro, 1984), an M.Sc. in Knowledge-Based Systems (Edinburgh, 1990) and a Ph.D. in Computer Science (Heriot-Watt, 1995). He worked as a Research Associate at Heriot-Watt University from December 1990 until December 1995. In January 1996 he joined the Department of Mathematical and Computing Sciences at Goldsmiths College, University of London, as a Lecturer. His current research interests include advanced data- and knowledge-base technology, logic programming, and software engineering. M. Howard Williams, Ph.D., D.Sc.: He obtained his Ph.D. in ionospheric physics and recently a D.Sc. in Computer Science. He was appointed as the first lecturer in Computer Science at Rhodes University in 1970. During the following decade he rose to Professor of Computer Science and in 1980 was appointed as Professor of Computer Science at Heriot-Watt University. From 1980 to 1988 he served as Head of Department and then as director of research until 1992. He is now head of the Database Research Group at Heriot-Watt University. His current research interests include active databases, deductive objectoriented databases, spatial databases, parallel databases and telemedicine. Norman W. Paton, Ph.D.: He received a B.Sc. in Computing Science from the University of Aberdeen in 1986. From 1986 to 1989 he worked as a Research Assistant at the University of Aberdeen, receiving a Ph. D. in 1989. From 1989 to 1995 he was a Lecturer in Computer Science at Heriot-Watt University. Since July 1995, he has been a Senior Lecturer in Department of Computer Science at the University of Manchester. His current research interests include active databases, deductive object-oriented databases, spatial databases and database interfaces.  相似文献   

18.
This paper proposes an automatic indexing method named PAI (Priming Activation Indexing) that extracts keywords expressing the author’s main point from a document based on the priming effect. The basic idea is that since the author writes a document emphasizing his/her main point, impressive terms born in the mind of the reader could represent the asserted keywords. Our approach employs a spreading activation model without using corpus, thesaurus, syntactic analysis, dependency relations between terms or any other knowledge except for stop-word list. Experimental evaluations are reported by applying PAI to journal/conference papers. Naohiro Matsumura: He received his B.S. and M.S. in Engineering Science from Osaka University in 1998 and 2000. Currently, he is a Ph.D. candidate in Engineering at the University of Tokyo and a research staff of PRESTO of Japan Science and Technology Corporation (2000–). His research interests include chance discovery, computer-mediated communication, and user-oriented data mining/text mining. Yukio Ohsawa, Ph.D.: BS, U. Tokyo, 1990, MS, 1992, DS, 1995. Research associate Osaka U. (1995). Associate prof. Univ. of Tsukuba (1999–) and also researcher of Japan Science and Technology Corp (2000–). He has been working for the program com. of the Workshop on Multiagent and Cooperative Computation, Annual Conf. Japanese Soc. Artificial Intelligence, International Conf. MultiAgent Systems, Discovery Science, Pacific Asia Knowledge Discovery and Data Mining, International Conference on Web Intelligence, etc. He chaired the First International Workshop of Japanese Soc. on Artificial Intelligence, Chance Discovery International Workshop Series and the Fall Symposium on Chance Discovery from AAAI. Guest editor of Special Issues on Chance Discovery for the Journal of Contingencies and Crisis Management, Journal of Japan Society for Fuzzy Theory and intelligent informatics, regular member of editorial board for Japanese Society of Artificial Intelligence. Currently he is authoring book “Chance Discovery” from Springer Verlag, “Knowledge Managament” from Ohmsha etc. Mitsuru Ishizuka, Ph.D.: He is a professor at the Dept. of Infomation and Communication Eng., School of Information Science and Thechnology, the Univ. of Tokyo. Prior to this position, he worked at NTT Yokosuka Lab. and the Institute of Industrial Science, the Univ. of Tokyo. He earned his B.S., M.S. and Ph.D. in electronic engineering from the Univ. of Tokyo. His research interests include artificial intelligence, WWW intelligence, and multimodal lifelike agents. He is a member of IEEE, AAAI, IEICE Japan, IPS Japan, and Japanese Society for AI.  相似文献   

19.
P transducers     
We introduce in this paper four classes of P transducers: arbitrary, initial, isolated arbitrary, isolated and initial. The first two classes are universal, they can compute the same word functions as Turing machines, the latter two are incomparable with finite state sequential transducers, generalized or not. We study the effect of the composition, and show that iteration increases the power of these latter classes, also leading to a new characterization of recursively enumerable languages. The “Sevilla carpet” of a computation is defined for P transducers, giving a representation of the control part for these P transducers. Gabriel Ciobanu, Ph.D.: He has graduated from the Faculty of Mathematics, “A.I.Cuza” University of Iasi, and received his Ph.D. from the same university. He is a senior researcher at the Institute of Computer Science of the Romanian Academy. He has wide-ranging interests in computing including distributed systems and concurrency, computational methods in biology, membrane computing, and theory of programming (semantics, formal methods, logics, verification). He has published around 90 papers in computer science and mathematics, a book on programming semantics and a book on network programming. He is a co-editor of three volumes. He has visited various universities in Europe, Asia, and North America, giving lectures and invited talks. His webpage is http://www.info.uaic.ro/gabriel Gheorghe Păun, Ph.D.: He has graduated from the Faculty of Mathematics, University of Bucharest, in 1974 and received his Ph.D. from the same university in 1977. Curently he works as senior researcher in the Institute of Mathematics of the Romanian Academy, as well as a Ramon y Cajal researcher in Sevilla University, Spain. He has repeatedly visited numerous universities in Europe, Asia, and North America. His main research areas are formal language theory and its applications, computational linguistics, DNA computing, and membrane computing (a research area initiated by him). He has published over 400 research papers (collaborating with many researchers worldwide), has lectured at over 100 universities, and gave numerous invited talks at recognized international conferences. He has published 11 books in mathematics and computer science, has edited about 30 collective volumes, and also published many popular science books and books on recreational mathematics (games). He is on the editorial boards of fourteen international journals in mathematics, computer science, and linguistics, and was/is involved in the program/steering/organizing commitees for many recognized conferences and workshops. In 1997 he was elected a member of the Romanian Academy. Gheorghe Ştefănescu, Ph.D.: He received his B.Sc./M.Sc./Ph.D. degrees in Computer Science from the University of Bucharest. Currently, he is a Professor of Computer Science at the University of Bucharest and a Senior Fellow at the National University of Singapore. Previously, he was a researcher at the Institute of Mathematics of the Romanian Academy and has held visiting positions in The Netherlands, Germany, and Japan. His current research focuses on formal methods in computer science, particularly on process and network algebras, formal methods for interactive, real-time, and object-oriented systems. Some of his results may be found in his book on “Network Algebra,” Springer, 2000.  相似文献   

20.
Data extraction from the web based on pre-defined schema   总被引:7,自引:1,他引:7       下载免费PDF全文
With the development of the Internet,the World Web has become an invaluable information source for most organizations,However,most documents available from the Web are in HTML form which is originally designed for document formatting with little consideration of its contents.Effectively extracting data from such documents remains a non-trivial task.In this paper,we present a schema-guided approach to extracting data from HTML pages .Under the approach,the user defines a schema specifying what to be extracted and provides sample mappings between the schema and th HTML page.The system will induce the mapping rules and generate a wrapper that takes the HTML page as input and produces the required datas in the form of XML conforming to the use-defined schema .A prototype system implementing the approach has been developed .The preliminary experiments indicate that the proposed semi-automatic approach is not only easy to use but also able to produce a wrapper that extracts required data from inputted pages with high accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号