首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对当前群组推荐研究中,对于用户偏好建模时大多忽略了群组偏好与个人偏好之间的相互影响以及建模初始化问题,提出了一种基于ranking的混合深度张量分解群组推荐算法(R-HDTF)。该算法首先利用基于深度降噪自动编码器的混合神经网络对群组、个人和项目等信息进行初始化;然后提出基于成对张量分解模型来捕获群组、个人和项目之间的相关关系;最后,采用BPR标准优化张量分解的损失函数,学习提出算法的参数。在真实数据集上的实验结果表明,该算法性能优于传统的主流群组推荐算法。  相似文献   

2.
3.
近十年来,协同过滤(CF)推荐系统成功地为用户提供了个性化的产品和服务。然而,用户—物品矩阵的稀疏性、推荐精度不高等问题仍然是一个挑战。针对这些问题,在矩阵分解模型基础上,提出了耦合用户和物品辅助信息的矩阵分解混合协同过滤框架;然后,基于此框架又提出了耦合物品属性信息相似度(COS)的过滤模型。大规模真实数据集上的实验表明,该模型不但可以有效解决物品相似度度量问题,而且相比传统方法,尤其是在物品特征非常稀疏的情况下,推荐准确性得到有效改进。  相似文献   

4.
郁雪  张昊男 《计算机应用研究》2020,37(4):977-981,985
基于矩阵分解技术的社会化推荐通过加入用户信任关系来加强学习准确性,但忽略了物品之间的关联信息在模型分解过程中对用户兴趣的影响。对此首先提出在物品相似度计算方法中加入用户参与度进行改进,并构建了融合物品关联正则项和信任用户正则项双重约束的矩阵分解推荐模型,在优化隐式特征矩阵过程中体现了物品之间的关联信息对推荐的重要影响。最后通过对两个不同稀疏级别的数据集的实验证明,相比主流的矩阵分解模型,提出的双重正则项的矩阵分解模型能够提高稀疏数据集上预测评分的准确性,并能明显缓解用户冷启动问题。  相似文献   

5.
基于Spark的矩阵分解推荐算法   总被引:1,自引:0,他引:1  
郑凤飞  黄文培  贾明正 《计算机应用》2015,35(10):2781-2783
针对传统矩阵分解算法在处理海量数据信息时所面临的处理速度和计算资源的瓶颈问题,利用Spark在内存计算和迭代计算上的优势,提出了Spark框架下的矩阵分解并行化算法。首先,依据历史数据矩阵初始化用户因子矩阵和项目因子矩阵;其次,迭代更新因子矩阵,将迭代结果置于内存中作为下次迭代的输入;最后,迭代结束时得到矩阵推荐模型。通过在GroupLens网站上提供的MovieLens数据集上的实验结果表明,加速比(Speedup)值达到了线性的结果,该算法可以提高协同过滤推荐算法在大数据规模下的执行效率。  相似文献   

6.
为提高利用张量分解技术进行基于位置社交网络的地点推荐的推荐性能,提出一种利用张量分解技术且融合神经网络的地点推荐算法。融合多层感知机和长短期记忆网络基于张量分解技术建模用户的签到行为,将学习到的用户偏好表示馈送到推荐生成器和推荐判别器组成的对抗生成网络中,通过对抗训练学习最佳用户偏好表示用于推荐。基于真实数据集的实验验证了该算法的有效性和高效性。  相似文献   

7.
针对三元组数据内在关联性复杂的特点,提出了基于平行因子分解(PARAFAC)的协同聚类推荐算法。该算法利用PARAFAC算法对张量进行分解,挖掘多维数据实体之间的相关联系和潜在主题。首先,利用PARAFAC分解算法对三元组张量数据进行聚类;然后,基于协同聚类算法提出了三种不同方案的推荐模型,并通过实验对三种方案进行了比较,得到了最优的推荐模型;最后,将提出的协同聚类模型与基于高阶奇异值分解(HOSVD)的推荐模型进行比较。在last.fm数据集上,PARAFAC协同聚类算法比HOSVD张量分解算法在召回率和精确度上平均提高了9.8个百分点和3.7个百分点,在delicious数据集上平均提高了11.6个百分点和3.9个百分点。实验结果表明所提算法能更有效地挖掘出张量中的潜在信息和内在联系,实现高准确率和高召回率的推荐。  相似文献   

8.
针对社交网络推荐系统中存在的数据稀疏、冷启动等问题,提出了一种结合特征传递和概率矩阵分解(TPMF)的社交网络混合型推荐算法。以概率矩阵因式分解(PMF)方法作为推荐框架,不仅考虑了用户信任网络,还结合推荐项目之间的关联关系、用户项目评分矩阵和自适应权重来权衡个人潜在特征和社交潜在特征对用户的影响程度。将社交网络中用户间的信任特征传递引入推荐系统中作为推荐的有效依据。实验结果表明,与基于用户的协同过滤(UBCF)、TidalTrust、PMF和SoRec算法相比,TPMF的平均绝对误差(MAE)直接相减后降低了4.1%到20.8%,均方根误差(RMSE)降低了3.3%到18.5%。在冷启动问题中,与上述四种算法相比,TPMF的平均绝对误差相减后降低了1.6%到14.7%,均方根误差降低了约1.2%到9.7%,能有效缓解冷启动问题,提高算法的鲁棒性。  相似文献   

9.
10.
刘亚楠  涂铮铮  罗斌 《计算机应用》2013,33(10):2871-2873
为了充分利用图像本身的结构信息并充分压缩图像数据,把得到的子空间中数据(反馈)的稀疏性作为约束项加入非负张量分解目标函数中,即采用基于反馈稀疏约束的非负张量分解算法对图像集合进行降维。最后,将该算法应用于手写数字图像库中,实验结果表明所提出的方法能有效改善图像分类的准确性  相似文献   

11.
近年来,随着媒介技术的快速发展,人们成组活动的现象逐渐增多,群组推荐系统也逐渐受到关注。现有的群组推荐系统往往将不同的成员视为同质对象,忽视了成员专业背景和项目固有属性之间的关系,无法真正地解决融合过程中的偏好冲突问题。为此,提出一种基于非负矩阵分解的群组推荐算法,通过非负矩阵分解将群组评分信息分解为用户矩阵和项目矩阵,针对2个矩阵分别利用隶属度和专业度权值计算得到项目隶属度矩阵和成员专业度矩阵,并由此获得各成员在不同项目上的贡献度来构建群组偏好模型。实验结果表明,所提算法在不同群组规模和组内相似度的情况下依然具有较高的推荐准确度。  相似文献   

12.
传统的基于内容的推荐算法往往具有较低的准确性,而协同过滤推荐算法中普遍存在数据稀缺性和项目冷启动问题。为解决上述问题,提出了一种融合内容与协同矩阵分解技术的混合推荐算法。该算法实现了在共同的低维空间中分解内容和协同矩阵,同时保留数据的局部结构。在参数优化方面利用一种基于乘法更新规则的迭代方法,以此提高学习能力。实验结果表明,该算法优于其他具有代表性的项目冷启动推荐算法,有效缓解了数据稀疏性,提高了推荐准确性。  相似文献   

13.
14.
杨阳  向阳  熊磊 《计算机应用》2012,32(2):395-398
针对个性化推荐系统中协同过滤算法面对的矩阵稀疏和新使用者问题,提出基于矩阵分解与用户近邻模型的推荐算法。通过对用户档案信息构建近邻模型以保证新使用者预测的准确性;同时考虑到数据量大和矩阵稀疏会引起时间和空间复杂度过高等问题,引入奇异值矩阵分解的方式,从而减小矩阵稀疏和数据量大的影响,提高推荐系统的准确性。实验结果表明,该算法能有效解决大数据量的矩阵稀疏问题以及新使用者问题。  相似文献   

15.
Wang  Qingren  Zhang  Min  Zhang  Yiwen  Zhong  Jinqin  Sheng  Victor S. 《Applied Intelligence》2022,52(9):9899-9918
Applied Intelligence - The era of everything as a service led to an explosion of services with similar functionalities on the internet. Quickly obtaining a high-quality service has become a...  相似文献   

16.
Hong  Minsung  Jung  Jason J. 《Applied Intelligence》2022,52(13):15006-15025
Applied Intelligence - With the advance of sentiment analysis techniques, several studies have been on Multi-Criteria Recommender Systems (MCRS) leveraging sentiment information. However, partial...  相似文献   

17.
将标签融入矩阵分解方法是当前推荐系统研究的热点。提出了一种基于标签自适应选择的矩阵分解推荐算法。首先,提出了标签 评分稀疏系数,较好地平衡了推荐过程中潜在特征与标签的使用问题。其次,利用标签的次数来计算标签向量,体现了标签的不同频率对不同物品的影响。最后,给出了算法的总体描述。实验结果表明,算法具有较高的推荐精度和较快的收敛速度。  相似文献   

18.
针对传统协同过滤算法普遍存在的稀疏性和冷启动问题,提出一种基于信任和矩阵分解的协同过滤推荐算法。提出一种基于用户评分值的隐式信任计算方法,该方法综合考虑用户的相似性和交互经验,运用信任传播方法使不存在直接信任的用户获得间接信任;通过动态因子将显式信任和隐式信任融入到SVD++算法当中。FilmTrust数据集下的实验表明,与其他矩阵分解推荐算法相比,该方法具有更好的预测效果,在冷启动用户的评分预测上也有很好的表现。  相似文献   

19.
针对传统音乐评分推荐模式用户评分缺失和主观差异性较大等问题,通过提取用户行为数据构建行为特征模型,用以分析用户行为与兴趣的关联性,并采用因子分解机(Factorization Machine,FM)预测用户行为类型,作为音乐推荐的依据。将FM应用到该方法中,充分利用音乐和用户属性特征,并且通过模拟用户行为特征数据中的隐因子来填充推荐的稀疏矩阵,降低数据稀疏对预测的影响。与传统音乐推荐方法相比,从用户历史行为中挖掘用户兴趣倾向以解决评分模型带来的问题更具可行性,实验结果表明该方法用于音乐推荐也具有良好的效果。  相似文献   

20.
Recommendation systems can interpret personal preferences and recommend the most relevant choices to the benefit of countless users. Attempts to improve the performance of recommendation systems have hence been the focus of much research in an era of information explosion. As users would like to ask about shopping information with their friend in real life and plentiful information concerning items can help to improve the recommendation accuracy, traditional work on recommending based on users’ social relationships or the content of item tagged by users fails as recommending process relies on mining a user’s historical information as much as possible. This paper proposes a new recommending model incorporating the social relationship and content information of items (SC) based on probabilistic matrix factorization named SC-PMF (Probabilistic Matrix Factorization with Social relationship and Content of items). Meanwhile, we take full advantage of the scalability of probabilistic matrix factorization, which helps to overcome the often encountered problem of data sparsity. Experiments demonstrate that SC-PMF is scalable and outperforms several baselines (PMF, LDA, CTR, SocialMF) for recommending.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号