首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
ABSTRACT:  Apple-based edible films containing plant antimicrobials were evaluated for their activity against pathogenic bacteria on meat and poultry products.  Salmonella enterica  or  E. coli  O157:H7 (107 CFU/g) cultures were surface inoculated on chicken breasts and  Listeria monocytogenes  (106 CFU/g) on ham. The inoculated products were then wrapped with edible films containing 3 concentrations (0.5%, 1.5%, and 3%) of cinnamaldehyde or carvacrol. Following incubation at either 23 or 4 °C for 72 h, samples were stomached in buffered peptone water, diluted, and plated for enumeration of survivors. The antimicrobial films exhibited concentration-dependent activities against the pathogens tested. At 23 °C on chicken breasts, films with 3% antimicrobials showed the highest reductions (4.3 to 6.8 log CFU/g) of both  S. enterica  and  E. coli  O157:H7. Films with 1.5% and 0.5% antimicrobials showed 2.4 to 4.3 and 1.6 to 2.8 log reductions, respectively. At 4 °C, carvacrol exhibited greater activity than did cinnamaldehyde. Films with 3%, 1.5%, and 0.5% carvacrol reduced the bacterial populations by about 3, 1.6 to 3, and 0.8 to 1 logs, respectively. Films with 3% and 1.5% cinnamaldehyde induced 1.2 to 2.8 and 1.2 to 1.3 log reductions, respectively. For  L. monocytogenes  on ham, carvacrol films induced greater reductions than did cinnamaldehyde films at all concentrations tested. In general, the reduction of  L. monocytogenes  on ham at 23 °C was greater than at 4 °C. Added antimicrobials had minor effects on physical properties of the films. The results suggest that the food industry and consumers could use these films as wrappings to control surface contamination by foodborne pathogenic microorganisms.  相似文献   

2.
Fresh cilantro, parsley, and spinach are products that are regularly consumed fresh, but are difficult to decontaminate, as a result, they are common vehicles of transmission of enteropathogenic bacteria. In this study, the efficacy of plant extracts as alternatives for disinfection of cilantro, parsley, and spinach that were artificially contaminated with Salmonella, Escherichia coli O157:H7, and Shigella sonnei was determined. Edible plant extracts obtained using ethanol as the extraction solvent were tested to determine the minimum bactericidal concentration (MBC) and those that exhibited the lowest MBC were selected for further studies. Leaves of fresh greens were washed with sterile water and dried. For seeding, leaves were submerged in suspensions of 2 different concentrations of bacteria (1.5 × 108 and 1 × 105), dried, and then stored at 4 °C until use. To determine the effects of the extracts, inoculated leafy greens were submerged in a container and subjected to treatments with chlorine, Citrol®, or selected plant extracts. Each treatment type was stored at 4 °C for 0, 1, 5, and 7 d, and the bacterial counts were determined. From the 41 plant extracts tested, the extracts from oregano leaves and from the peel and pulp of limes were found to be as effective as chlorine or Citrol® in reducing by > 2 logs, the population of pathogenic bacteria on leafy greens and therefore, may be a natural and edible alternative to chemicals to reduce the risk of Salmonella, E. coli O157:H7 and S. sonnei contamination on leafy vegetables. Practical Application: The antimicrobial efficacy of the extracts of Mexican lime and oregano was clearly demonstrated on cilantro, parsley, and spinach. The extracts of Mexican lime and oregano provide alternatives to chlorine to significantly reduce bacterial pathogens that have been associated with outbreaks from contaminated leafy green vegetables. A simple, low cost, and labor‐saving extraction system for production of the extracts was used.  相似文献   

3.
ABSTRACT:  Essential oils (EOs) derived from plants are rich sources of volatile terpenoids and phenolic compounds. Such compounds have the potential to inactivate pathogenic bacteria on contact and in the vapor phase. Edible films made from fruits or vegetables containing EOs can be used commercially to protect food against contamination by pathogenic bacteria. EOs from cinnamon, allspice, and clove bud plants are compatible with the sensory characteristics of apple-based edible films. These films could extend product shelf life and reduce risk of pathogen growth on food surfaces. This study evaluated physical properties (water vapor permeability, color, tensile properties) and antimicrobial activities against  Escherichia coli  O157:H7,  Salmonella enterica,  and  Listeria monocytogenes  of allspice, cinnamon, and clove bud oils in apple puree film-forming solutions formulated into edible films at 0.5% to 3% (w/w) concentrations. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor phase diffusion of the antimicrobial from the film to the bacteria. The antimicrobial activities against the 3 pathogens were in the following order: cinnamon oil > clove bud oil > allspice oil. The antimicrobial films were more effective against  L. monocytogenes  than against the  S. enterica . The oils reduced the viscosity of the apple solutions and increased elongation and darkened the colors of the films. They did not affect water vapor permeability. The results show that apple-based films with allspice, cinnamon, or clove bud oils were active against 3 foodborne pathogens by both direct contact with the bacteria and indirectly by vapors emanating from the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号