首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
细粒度金刚石砂轮椭圆超声振动修整试验研究   总被引:3,自引:1,他引:2  
针对硬脆材料精密加工中细粒度金属结合剂金刚石砂轮修整精度低、修整速度慢、成本高的难题,开发了基于局部共振设计方法的新型单驱动椭圆振动超声修整装置,设计了专用试验砂轮.修整试验结果表明:与普通机械修整方式比较,椭圆超声振动修整后的砂轮表面磨粒分布均匀、静态磨粒数增加;磨粒表面平滑完整,多个棱边有完整锋利的磨刃;同时,结合剂三角洲面积减小,磨粒突出高度增大,延性修整痕迹明显.随着修整切深增加,单位面积上砂轮突出磨粒数减少,砂轮的承载率下降,磨粒锋利性降低;随着修整导程增加,各截层的磨粒数逐步减少,但是承载率增加,磨粒变得锋利;砂轮转速增加,椭圆超声振动修整的效果减弱,砂轮磨粒锋利性降低,而超声功率增大有利于改善修整效果.选择合理参数,采用椭圆振动超声复合修整技术,可以实现细粒度金刚石砂轮的低成本快速修整.  相似文献   

2.
本文就树脂结合剂CBN砂轮的修整方法及其对磨削表面完整性的影响进行了研究。结果表明,目前常用的油石修整法等不能得到有效的修整和磨削结果,在磨削表面造成严重的热损伤,而本文提出的弹性修整法和超声波振动修整法修整效果显著,可以较准确地控制CBN磨粒的凸出高度,使砂轮具有很强的切削能力,获得高的生产率和磨削表面完整性。  相似文献   

3.
修整参数对陶瓷cBN砂轮磨削效果的影响   总被引:2,自引:1,他引:1  
本研究采用陶瓷cBN砂轮加工冷激合金铸铁凸轮,采用金刚石滚轮对砂轮进行在线修整。通过改变修整量、滚轮与砂轮的相对移动速度、修整速比,得出修整参数对砂轮磨削效果的影响规律。研究结果表明,当修整量从5μm×4降低到5μm×3时,工件表面粗糙度从0.25μm增大0.27μm,但仍可满足加工表面粗糙度要求,而砂轮修整量减少1/4,砂轮使用寿命延长;滚轮与砂轮的相对移动速度从0.1 mm/r增大到0.15 mm/r时,工件表面粗糙度值Ra从0.354μm上升到0.452μm,砂轮耐用度从750个工件降低到480个;修整速比增大,工件磨削表面粗糙度增大,当修整速比从0.61增大到1.35时,工件表面粗糙度值Ra从0.2μm增大到0.63μm。  相似文献   

4.
硬脆材料精密高效的磨削水平取决于超硬砂轮的修整,随着硬脆材料的广泛使用,超硬磨料砂轮的修整技术也有了新的发展。本文简要叙述了目前一些修整方法的局限性并重点论述了超声波振动修整方法的修整机理以及不同的修整方式,并且对各种修整方式的特点和效果进行了分析。超声振动修整技术是一种高效的修整方法,修整后的砂轮获得了理想的砂轮形貌。其中,单激励椭圆超声振动修整技术是一种有效而低成本的新型修整方法,可以实现金刚石砂轮的高效修整。  相似文献   

5.
凸轮加工中陶瓷cBN砂轮修整参数的优化研究   总被引:1,自引:0,他引:1  
利用金刚石滚轮对陶瓷cBN砂轮进行在线修整,对陶瓷cBN砂轮的修整间隔和修整量进行了优化研究。研究表明:当砂轮修整间隔从50件增加到100件,工件加工表面粗糙度从Ra0.335μm上升到Ra0.350μm,仍然满足工件加工表面的粗糙度要求,可以提高砂轮耐用度一倍;当砂轮修整量从3μm×5降低到3μm×3时,工件加工表面粗糙度从Ra0.350μm上升到Ra0.390μm,但仍可满足工件加工表面的粗糙度要求,而减少砂轮修整量2/5;通过修整间隔和修整量两项修整参数的优化,避免了砂轮的过度修整,节约了成本。  相似文献   

6.
为解决粗磨粒金刚石砂轮磨块的修整问题,使用W-Mo-Cr合金材料作为修整工具对磨粒粒度尺寸为297~420μm的金刚石砂轮磨块进行修整,修整前后分别测量砂轮表面磨粒的等高性和磨粒的微观形貌,并且分别用修整前后的砂轮磨块进行WC硬质合金的磨削试验。结果表明:W-Mo-Cr合金材料对金刚石砂轮修整效率高,修整后砂轮表面磨粒的等高性提升了60%左右。利用修整后的金刚石砂轮磨削WC硬质合金,工件表面质量得到很大的改善,表面粗糙度达到Ra0.149μm。   相似文献   

7.
在前两篇文章中,笔者提出了一种以杯形砂轮为工具的金刚石砂轮修整方法。本文探讨了以该方法修整陶瓷结合剂金刚石砂轮的机理。主要结论如下:(1)杯形砂轮的修整作用主要取决于从GC砂轮上脱落下来的磨粒对金刚石磨粒和结合剂桥的冲击。(2)杯形砂轮越软,其上脱落下来的磨粒越大,修整效率越高,但金刚石砂轮表面越粗糙。(3)用烧结体多点金刚石笔修整时,从最外表面开始,金刚石砂轮表层磨粒依次被金刚石笔削去。(4)作为添加材料加入到陶瓷结合剂金刚石砂轮中的碳化硅磨粒,其顶端在磨削初期即被磨平。(5)磨削难磨材料时,最好使用无添加材料的陶瓷结合剂金刚石砂轮。  相似文献   

8.
为准确描述超声振动下的单颗磨粒切厚特征,实测多层金属结合剂金刚石砂轮表面的相邻2颗磨粒的周向间距以及磨粒出刃高度;依据超声振动辅助磨削的磨粒运动轨迹方程及相邻磨粒运动轨迹干涉理论,采用等分线法,利用MATLAB软件求解磨粒在完整接触弧区的单颗磨粒切厚值,并分析各主要参数对单颗磨粒切厚特征的影响。结果表明:相邻磨粒间距、相邻磨粒高度差对单颗磨粒切厚的影响均呈线性变化;单颗磨粒切厚随超声振幅的增大而线性增大,且随超声振动频率的增大而阶段性变化;超声振动辅助磨削的单颗磨粒切厚特征受砂轮转速、磨削深度的影响较大,受工件进给速度的影响相对较小。   相似文献   

9.
为探究砂轮表面磨粒形态对磨削振动的影响规律,提高磨削加工质量,构建了磨削振动模型并推导磨粒形态-接触刚性-磨削振动的对应关系,开展修整-磨削试验,通过试验分析并验证不同磨粒形态对磨削振动信号RMS和工件表面波纹特征Wa影响的差异。结果表明:在不影响砂轮锋利性的前提下,表征磨粒出露高度的砂轮AH值减小约58%,则RMS值和Wa值分别减小约47%和57%;在相同磨粒出露高度条件下,磨粒钝化的比例约20%,则RMS和Wa分别减小约22%和30%;同时,适度减小磨粒出露高度,磨粒适度钝化,有助于增大磨粒与工件接触面积,改善磨削振动,提高磨削加工质量。且提出的磨削振动模型与试验结果相符。   相似文献   

10.
为了实现粗磨粒金刚石砂轮延性域磨削加工SiC陶瓷材料,采用碟轮对粒径为297~420μm的粗磨粒金刚石砂轮进行了精密修整。然后,使用经过修整好的粗磨粒金刚石砂轮对SiC陶瓷进行磨削加工。在此基础上,对不同的砂轮线速度、工件进给速度、磨削切深对SiC陶瓷表面粗糙度和表面形貌的影响进行了研究。试验结果表明:经过精密修整的粗磨粒金刚石砂轮是能够实现SiC陶瓷材料的延性域磨削的,表面粗糙度值Ra达到0.151μm;随着砂轮线速度增大、工件进给速度和磨削切深减小,SiC陶瓷表面的脆性断裂减小,塑性去除增加。  相似文献   

11.
针对电镀砂轮制造过程中存在的磨粒等高性不好的问题,采用白刚玉油石对其进行修整。通过选择合理的修整参数,使得砂轮和油石的相互作用力控制在一定的范围内,实现突出高度较高,结合强度差的磨粒的去除;而对等高性较好,结合强度较高的磨粒影响不大,从而达到修整的目的。为了对修整效果进行评价,采用激光扫描方法得到修整前后砂轮的地貌,并根据地貌的不同特征分析和验证修整效果,重点关注磨粒出刃高度和等高性。  相似文献   

12.
采用扫描电子显微镜和X射线衍射仪等仪器对镀钛前后的cBN磨料和陶瓷结合剂烧结样条的显微结构进行了观察;分析了结合剂与cBN磨料的结合关系,并对陶瓷结合剂烧结样条进行了抗折强度试验。结果表明,cBN磨料镀钛前后其性能变化很小,未镀钛cBN磨料与结合剂烧结样条的抗折强度为61.97MPa,两者间是机械包镶式的结合;镀钛cBN磨料与结合剂烧结样条的抗折强度为67.65MPa,两者间还含有化学结合;cBN磨料镀钛后对砂轮强度的提高有益,但前者的抗折强度已满足超高速砂轮的需要,单就提高砂轮强度来说,无需镀钛。  相似文献   

13.
本文针对精密内圆磨床的特点,采用金刚石滚轮对陶瓷cBN砂轮进行了修整工艺的实验研究。通过对修整后的砂轮形貌、磨削工件表面质量进行检测,研究了不同修整深度和轴向速度对修整质量的影响,并进一步分析了影响机理。结果表明:该修整方法修整精度好,修整效率高;当修整速比为0.8,修整进给深度为0.002~0.003mm,轴向速度为0.3m/min时能够较好的满足工件内圆精密磨削cBN砂轮的修整要求。  相似文献   

14.
cBN砂轮在高速设备上使用非常广泛,但在老式低速磨床上采用cBN砂轮的非常少。我们在这方面做了大胆的尝试,就是在老式磨床上不做任何改进,直接更换相同直径的陶瓷cBN砂轮,通过更换皮带轮改变传动比,把砂轮速度从51.4 m/s提升到64.8 m/s,增大冷却液流量、压力,确定冷却液冲刷位置,改变切削的进给量,使cBN砂轮的一个修整频次内寿命大幅提升。最后证明陶瓷cBN砂轮在低速磨床中一样可以替代刚玉砂轮,并且不需要大的改造投资,可以获得非常好的综合经济效益。  相似文献   

15.
超声振动螺线磨削过程中,砂轮表面微观形貌的变化复杂.为准确表征其特征,采用功率谱密度分析方法,将砂轮表面的微观结构分解为不同频率、振幅和相位的谐波,对比分析不同磨削行程时普通磨削和超声振动螺线磨削砂轮表面的磨损行为.结果表明:砂轮表面功率谱密度曲线的斜率k随着磨削行程的增大而逐渐减小,即k越小砂轮表面磨损越严重.其中,...  相似文献   

16.
采用氧化铝砂轮和cBN砂轮对S136模具钢进行磨削实验,研究两种砂轮磨削S136钢过程中磨削力与磨削温度随磨削参数的变化规律,以及磨削力、磨削温度与磨削表面硬度、表面烧伤、表面粗糙度等的关系。实验结果表明:在相同的磨削参数下,氧化铝砂轮的磨削力比cBN砂轮的磨削力大10~30 N;氧化铝砂轮的磨削温度远远高于cBN砂轮的磨削温度,并且随着切深的增加,两种砂轮的温度差值增大;当磨削温度达到一定值时,工件的磨削表面出现烧伤,工件表面粗糙度急剧增加,工件表面硬度显著降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号