首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(8):6039-6047
This paper aims to study the suitability of fully replacing cement by sodium carbonate activated slag in producing autoclaved aerated concrete (AAC). The material properties of the product are characterized in terms of green strength development, mechanical properties, pore related properties such as porosity and thermal conductivity, shrinkage and reaction products. The produced alkali-activated slag-based AAC (ASAAC) shows comparable material properties to the designed cement-based reference AAC samples by giving a compressive strength of −25% with raw density of +18%, thermal conductivity of +13% with a porosity of −5% and drying shrinkage of +5.5%. Besides, a relatively higher crystallinity of calcium silicate hydrates and Al incorporation in the chain of C-S-H is observed for ASAAC products. Furthermore, significant reductions in cost, energy consumption and CO2 emission are foreseen.  相似文献   

2.
宋杨  金文娟 《硅酸盐通报》2018,37(1):290-296
火灾高温不仅会降低混凝土结构的力学性能,还会对混凝土的耐久性产生重大的影响.通过高温电阻炉模拟火灾试验,研究高温下混凝土的气体渗透性、弹性模量和轴心抗压强度的变化特征,以及气体渗透性和力学性能的相互关系.试验结果表明:混凝土气体渗透性随火灾温度的升高而逐渐增大,且在500℃时气体渗透性增长72.6倍;在200 ℃高温下,混凝土的弹性模量和轴心抗压强度略有提高,而在350 ℃及以上高温下,其力学性能大幅降低.  相似文献   

3.
通过试验,研究了混凝土含气量的经时损失规律及其影响因素,以及养护温度和引气剂对混凝土强度、抗氯离子渗透性和微观孔结构等性能的影响.结果表明:新拌混凝土的含气量损失与混凝土的初始含气量有关,初始含气量越大,损失也会更大,且处于动态过程的新拌混凝土的含气量损失较静态过程更大;与标准养护条件相比,负温养护条件一方面会使混凝土内部的水化反应变慢,水化程度变低,另一方面水结冰也会引起体积膨胀,破坏混凝土内部的晶体结构,对混凝土内部孔结构造成了一定程度的损伤,使得混凝土抗压强度降低,电通量、气孔间距系数等参数增大;掺入引气剂会引入了大量的微小气泡,使混凝土内部小孔径的孔含量增多,在一定程度上会提高孔的连通性,从而相对减小混凝土受力面积,造成混凝土抗压强度降低,电通量增大,孔径分布也会朝着小孔径方向移动.  相似文献   

4.
为探究不同地温环境对喷射混凝土性能的影响,本研究在实验室模拟相应温度条件,开展不同养护温度下喷射混凝土强度、耐久性及混凝土与岩石粘结强度的研究.结果表明,在25~40℃养护条件下,随养护温度的提高,喷射混凝土的抗压强度、混凝土与岩石的粘结强度呈增大趋势,但在60℃养护条件下抗压强度和粘结强度均降低并随龄期呈先增大后降低的趋势;25~60℃养护条件下的混凝土抗渗等级都为最高等级,氯离子渗透性皆处于低级;随温度升高,其抗渗性、抗氯离子渗透性、抗碳化能力均有所降低.  相似文献   

5.
Alkali-activated cements are widely studied as alternative and sustainable binder in soil stabilization. In this research work, a mold was designed and constructed, which allowed small cubic specimens to be made (40 × 40 × 40 mm3). With the newly designed mold, cubic samples of soil stabilized with portland cement (OPC) and alternative AAC (based on spent fluid catalytic cracking catalyst FCC) were prepared from which compressive strength was obtained. Cylindrical specimens were also prepared using the same binders as in the previous case to obtain their compressive strength. The results obtained in both cases were compared. Greater resistances for cubic samples were achieved. The cubic specimens were selected for being better in terms of standard deviation of compressive strength for AAC stabilized soil. The obtained compressive strength and standard deviation results were compared between the soil specimens stabilized with different stabilizers cured at 7, 14, 28, and 90 days. The method allows small-sized cubic specimens to be prepared. It improves ergonomics. It also facilitates a large number of specimens being obtained with a small amount of sample. Soil stabilized with AAC yielded higher compressive strength after 90 days compared to that with OPC.  相似文献   

6.
Lime and sand in autoclaved aerated concrete (AAC) were replaced by air-cooled slag (AS). The compressive strength and the type and nature of the hydration products were studied for samples autoclaved at 8 bar for different periods of times: 2, 6, 12 and 24 h. The hydration reactions were monitored by determining free-lime contents and combined water. The types of the hydration products were investigated using XRD and SEM/EDX. Slag substitutions for sand and lime up to 50% enhance the compressive strength, especially at short curing times (2 and 6 h). The optimum strength is obtained by 50% AS substitution for low-lime mixes (10% CaO) and 30% AS substitution for high-lime mixes (25% CaO). In high-lime mixes containing up to 30% AS, the initially formed fibrous calcium-rich CSH was changed to needle-like and lath-like 1.1 nm tobermorite. In low-lime mixes with AS-substitution, tobermorite appears at 2 h processing time with grass-like silica-rich CSH around quartz particles.  相似文献   

7.
为了利用改性磷石膏制备磷石膏制品用于墙体充填材料中,本文研究了不同低气压和低气压养护时间对磷石膏密度、抗压强度、吸水率及渗透性的影响。结果表明,养护3 d和28 d磷石膏砂浆的密度都在0.7 kPa时相对最小,随着低气压养护时间延长磷石膏砂浆密度降低;在3 d和28 d,低气压养护下磷石膏砂浆抗压强度均高于气压为1 kPa时的抗压强度,在28 d,磷石膏砂浆的抗压强度在0.7 kPa时表现出最大的趋势;不同低气压和低气压养护时间下磷石膏砂浆的抗压强度均满足砂浆MU5.0的要求,但对吸水率和渗透性的影响均较小。因此,磷石膏制品不仅能作为房屋装饰材料,也能作为房屋墙体填充材料,且能有效减轻其荷载进而提高抗震能力。  相似文献   

8.
铁尾矿在蒸压养护过程中的物相变化   总被引:3,自引:0,他引:3  
以铁矿尾矿替代河砂或者粉煤灰作为主要原料,铝粉作为发气剂,研究制备出了蒸压加气混凝土砌块.在铁矿尾矿、石灰、水泥和脱硫石膏的配合比(质量比)为60∶25∶10∶5时,加气混凝土砌块的强度最优,约为4.43 MPa,此时体积密度为513 kg/m',比强度为8.34 MPa.由X射线衍射测试分析可知,成品中主要的矿物成分...  相似文献   

9.
A unique hierarchical porous structure of silicon nitride ceramic with 76.5% porosity is fabricated by combining an ice‐templating method and nitridation for a silicon powder. The porous silicon nitride ceramics were composed of a lamellar structure with aligned pore channels and ceramic walls filled with fibrous whiskers. This study is focused on the influences of freezing rate on the microstructures and properties of the silicon nitride ceramics. The properties were characterized by compressive strength and gas permeability, which were shown to vary with controlled microstructure. The compressive strength and the permeability reached up to 32.2 MPa and 0.035?12 m2, respectively.  相似文献   

10.
New gel system for preparing mullite porous ceramics by gel-casting freeze-drying was proposed, using pectin as gel source and alumina and silica as raw materials. Directional channels were formed due to sublimation of water during freeze-drying and decomposition of pectin during high temperature sintering to prepare porous mullite ceramic membranes. Effects of solid content on the properties of mullite ceramics in terms of phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal conductivity, pressure drop, and gas permeability were investigated. It was found that prepared porous mullite possessed high apparent porosity (56.04%–75.34%), low bulk density (.77–1.37 g/cm3), uniform pore size distribution, relatively high compressive strength (.61–3.03 MPa), low thermal conductivity (.224–.329 W/(m·K)), high gas permeability coefficient (1.11 × 10−10–4.73 × 10−11 m2), and gas permeance (2.18 × 10−2–9.32 × 10−3 mol⋅m−2⋅s−1⋅Pa−1). These properties make prepared lightweight mullite ceramic membranes promising for application in high temperature flue gas filtration. Proposed gel system is expected to provide a new route to prepare porous ceramics with high porosity and directional channels.  相似文献   

11.
Cement with distributed exfoliated graphite (isotropic) is made by incorporating exfoliated graphite in the wet cement mix; cement with networked exfoliated graphite (anisotropic) is made by compressing a dry mixture of exfoliated graphite and cement particles, followed by curing with water. The graphite layers in the latter are preferentially oriented in the plane perpendicular to the compression direction; the in-plane electrical resistivity is much lower than the out-of-plane resistivity and the loss tangent, storage modulus and loss modulus are much higher for out-of-plane flexure than in-plane flexure. The latter gives higher density, lower electrical resistivity, higher compressive strength and superior vibration damping than the former. Compared to plain cement, it gives higher density and higher compressive strength. In contrast, cement with distributed exfoliated graphite gives lower density and lower compressive strength than plain cement, though it gives lower resistivity and superior damping. Distributed exfoliated graphite is detrimental when silica fume is present. The high damping of cement with networked exfoliated graphite is attributed to the effective sandwiching of the network ligaments by the cement matrix (constrained-layer damping); the high density and compressive strength are attributed to the low porosity caused by the compression of the exfoliated graphite during composite fabrication.  相似文献   

12.
采用石墨烯、热塑性聚氨酯(TPU)复合改性聚氨酯注浆材料,并添加少量的粉煤灰、炉底渣及碱性激发剂制备一种低密度、高强度、快硬性的TPU/石墨烯改性聚氨酯注浆材料。借助聚氨酯弹性体材料密度测试仪、万能材料试验机、渗透系数测试仪、荧光显微镜对TPU/石墨烯改性聚氨酯注浆材料的密度、膨胀倍数、抗压强度、阻燃性能、渗透系数及微观形貌进行表征,深入分析了石墨烯和TPU的种类和含量对聚氨酯注浆材料基本物理性能、力学性能及微观结构的影响。结果表明,TPU/石墨烯改性聚氨酯注浆材料的密度为0.24~1.25 g/cm3,膨胀倍数最高可达38倍,抗压强度为15.0~43.8 MPa,相比普通聚氨酯注浆材料,改性聚氨酯注浆材料抗压强度提升1倍以上。酒精灯燃烧试验显示注浆材料无焰燃烧时间均小于20 s。石墨烯和TPU均可提高聚氨酯的强度和耐久性,改善TPU的微观形貌。TPU/石墨烯改性聚氨酯注浆材料表现出良好的强度、耐久性及弹性,是一种性能优异的注浆材料。  相似文献   

13.
Microcellular biomorphous Al2O3 was produced by Al-vapor infiltration in pyrolyzed rattan and pine wood-derived biocarbon preforms. At 1600°C the biocarbon preforms reacted with gaseous aluminum to form Al4C3. After oxidation in air at temperatures between 1550° and 1650°C, for 3 h, the biocarbon preforms were fully converted into α-Al2O3. Owing to the high anisotropy of biomorphous Al2O3, the compressive strength behavior was strongly dependent on the loading direction. The compressive strength of the specimens (0.1–11 MPa) is strongly dependent on their overall porosity and their behavior could be explained using the Gibson–Ashby model. The Darcian permeability ( k 1), as well as the non-Darcian permeability ( k 2), increased with an increase of the total porosity. The Darcian permeability of biomorphous Al2O3 was found to be in the range of 1–8 × 10−9 m2, which is in the order of magnitude of gas filters, and, therefore, suitable for several technological applications.  相似文献   

14.
Highly permeable AlN micro-honeycomb (AlN-H) ceramics with unidirectional macropore channels and porous struts were fabricated via tertiary butyl alcohol (TBA)-based freeze-casting. The effect of the AlN solid loading of the freezing slurries on the microstructure, open porosity, N2 gas permeability, and compressive strength of the as-prepared AlN-Hs were systematically investigated. The results showed that the honeycomb structure and open porosity of the AlN-Hs can be adjusted by altering solid loading. With the increase in solid loading from 10 vol% to 30 vol%, the approximate pore channel size of the AlN-Hs decreased from 50.1 μm to 15.6 μm, strut thickness increased from 8.2 μm to 16.6 μm approximately, and the corresponding open porosity decreased from 87.6–56.6%. The as-fabricated AlN-H with an open porosity of 64.9% possessed high N2 gas permeability and essential compressive strength and can be used as a catalyst support or filter in industries.  相似文献   

15.
Conclusions Studies have been carried out on the production of chromic oxide refractories with lower density and thermal conductivity. The connection between the strength and thermal conductivity, on the one hand, and the porosity, gas permeability, and average pore size, on the other, have been studied for chromic oxide refractories.It is shown that when a small amount of soot is added, high-density and high-porosity chromic oxide refractories can be obtained with an ultimate compressive strength of >10MPa, a low thermal conductivity, and high glass resistance.Translated from Ogneupory, No. 4, pp. 45–49, April, 1981.  相似文献   

16.
透水混凝土在缓解城市内涝、噪音效应和热岛效应等方面具有广泛的应用前景,但多孔导致的强度偏低限制了其进一步推广应用。本文采用再生粗骨料和聚丙烯纤维配制高性能透水再生混凝土,设计五因素四水平正交试验,采用极差法分析水胶比、目标孔隙率、再生粗骨料取代率、粉煤灰掺量和聚丙烯纤维掺量对透水再生混凝土抗压强度、有效孔隙率、透水系数的影响规律。结果表明:透水再生混凝土抗压强度影响因素的主次顺序为目标孔隙率>再生粗骨料取代率>水胶比>聚丙烯纤维掺量>粉煤灰掺量;透水再生混凝土抗压强度最大为48.26 MPa,此时透水系数为1.96 mm/s;随着目标孔隙率的提高抗压强度呈线性下降的趋势;40%再生粗骨料等质量取代天然粗骨料后,透水再生混凝土的抗压强度达到28.7 MPa,提高119.08%,透水系数增加9.44%;掺入0.11%体积掺量的聚丙烯纤维后透水再生混凝土的抗压强度达到27.4 MPa,提高幅度为10.48%,而且透水性能不会降低。研究结果可以为高性能透水再生混凝土的制备提供依据。  相似文献   

17.
以C20透水混凝土为设计基准,再生骨料和橡胶颗粒掺量为影响因素,通过测定透水混凝土的连通孔隙率、透水系数、28 d抗压强度、劈裂抗拉强度及弹性模量等性能指标,研究再生骨料和橡胶颗粒对透水混凝土基本性能的影响规律;同时,采用拟合回归和综合对比的方法建立透水混凝土连通孔隙率与透水系数、劈裂抗拉强度及弹性模量与28 d抗压强度之间的关系模型.  相似文献   

18.
Cracks in concrete structures can indicate major structural problems and can damage the appearance of monolithic construction. Cracking of concrete is a major factor affecting for the material strength and durability. The development of a crack pattern can contribute to increasing the permeability and the diffusivity of concrete, which is generally connected with a substantial reduction of its durability. This paper describes a method for identification and quantification of crack patterns in concrete by means of optical fluorescent microscopy and image analysis. Results obtained for undamaged and deteriorated specimens are presented. The range of investigation included several concrete mixes made in the laboratory. In order to induce cracks, concrete mixes were exposed to freezing action 0, 1 and 2 h after mixing. The concrete cubes of 100-mm and 150-mm size were frozen for 0 (reference specimens) and 2 days. Investigation of compressive strength, water permeability, chloride migration and analysis of cracks was made after 28 days. The low-temperature deteriorated specimens showed a significant reduction of compressive strength and resistance to water and chloride penetration in concrete. Correlations between density of cracks and compressive strength, depth of water penetration and depth of chloride penetration have been proposed.  相似文献   

19.
The mechanical properties were investigated for autociaved aerated concrete (AAC) block samples, prepared using blast furnace slag at 180°C under saturated steam pressures for various times from 1 to 128 h. The mechanical properties of AAC made using slag are comparable to those made without slag. With increased autoclaving time, the compressive strength increases due to the binder effect of the 1.1-nm tobermorite. In contrast, the fracture energy G F. and resistance to crack growth decrease with increase of autoclaving time. This dependency is caused by the formation of voids around unreacted slag particles.  相似文献   

20.
张茂林  杜红秀 《硅酸盐通报》2018,37(4):1303-1308
以聚丙烯纤维及橡胶颗粒掺量为影响因素,通过测定透水混凝土的28 d抗压强度、抗折强度、孔隙率及透水系数等性能指标,获取聚丙烯纤维及橡胶颗粒掺量与透水混凝土力学性能及透水性能的关系.试验结果表明:粗骨料粒径为4.75~9.5 mm时,掺入橡胶颗粒和聚丙烯纤维皆会使透水混凝土的28 d抗压强度、抗折强度提高,但会使透水系数减小,透水性能下降;与掺加橡胶颗粒相比,掺加聚丙烯纤维可以更加明显地改善透水混凝土力学性能;随着掺入聚丙烯纤维以及橡胶颗粒比例的增加,透水混凝土28 d抗压强度、抗折强度性能指标上升的幅度逐渐减小,透水性能则逐渐下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号