共查询到20条相似文献,搜索用时 62 毫秒
1.
二维热传导方程有限差分区域分解算法 总被引:2,自引:0,他引:2
本文讨论了一类数值求解二维热传导方程的并行差分格式.在这个算法中,通过引进内界点将求解区域分裂成若干子区域.在子区域间内界点上采用非对称格式计算,一旦这些点的值被计算出来,各子区域间的计算可完全并行.本文得到了稳定性条件和最大模误差估计.它表明我们的格式有令人满意的稳定性,并且有着较高的收敛阶. 相似文献
2.
随着海洋开发、灾害预防等方面的发展,浅水方程的求解越来越受到人们的重视.文中在文献[1]的基础上提出一种新的求解二维浅水方程的有限体积格式,并将文献[2]中给出的新型可微限制器函数运用到上述有限体积法求解二维浅水波问题的过程当中,建立新的可求解二维浅水方程的新的高分辨率有限体积法.文中提出的方法由预估阶段和校正阶段组成,该方法是在非结构化三角网格中实现的.运用这种方法模拟超临界流斜水跃现象,数值试验结果显示所提出的有限体积法具有很好的非震荡性. 相似文献
3.
提出了一种大规模热传导方程并行求解的策略,采用了分布式内存和压缩矩阵技术解决超大规模稀疏矩阵的存储及其计算,整合了多种Krylov子空间方法和预条件子技术来并行求解大规模线性方程组,基于面向对象设计实现了具体应用与算法的低耦合.在Linux机群系统上进行了性能测试,程序具有良好的加速比和计算性能. 相似文献
4.
何俊红 《计算机与数字工程》2015,43(5)
为了分析热传导方程反问题所涉及的初始条件.论文把这一类问题转化成第一类Fredholm积分方程,运用Tikhonov正则化的反演法和牛顿法获取正则化参数,得到这一问题的数值解.通过数值实验,验证了这一算法在实际应用中的有效性. 相似文献
5.
针对小口径高射速火炮的特点,将传热学理论应用于身管传热计算及温度场分析,采用有限容积法对身管温度场分布情况进行了数值模拟.以某型小口径高射速火炮为研究对象,建立了身管传热的物理模型,用有限容积法将导热方程离散化,然后用Gauss-Seidel迭代方法求解代数方程组,并且编制了实用直观的仿真软件,对身管温度场的变化规律做出预测. 相似文献
6.
李玉山 《自动化与仪器仪表》2015,(2):113-116
本文给出一种求解具有多层区域一维热传导方程移动边界问题的无网格方法,即基本解方法.该方法属于径向基函数类方法,它使用微分算子的基本解作为基于欧氏距离的径向基函数,提供了一种在整个时间空间区域上的行之有效的数值格式。最后用数值例子说明该方法具有较高的精度,并分析了数值解精度与各参数之间的关系。 相似文献
7.
一类二维粘性波动方程的交替方向有限体积元方法 总被引:1,自引:0,他引:1
王同科 《数值计算与计算机应用》2010,31(1):64-75
针对二维粘性波动方程模型问题,提出了一类基于双线性插值的交替方向有限体积元方法,并给出了两种具体计算格式,一是基于有限差分方法中Douglas思想的格式,二是一类推广型的局部一维格式.分析证明了该方法按照L~2范数在时间和空间方向均有二阶收敛精度.最后,数值算例验证了算法的有效性和精确性. 相似文献
8.
简要阐述了JC法计算结构可靠性的基本原理,在此基础上,利用MATLAB7.0的图形用户界面(GUI)编制了结构可靠性指标计算软件,为JC法解决可靠度计算问题提供了一个简单的GUI平台。 相似文献
9.
热传导方程基于界面修正的迭代并行计算方法 总被引:3,自引:0,他引:3
在许多实际计算中,由于对时间步长稳定性的要求,辐射热传导方程的计算通常采用隐式格式.隐式格式难以直接在并行机上实施,显式差分格式尽管易于在并行机上实施,但它的稳定性条件苛刻.在计算问题规模相当大时,例如需要具有数百、数千甚至上万台处理器的大型并行计算机进行计算时,数据的强相关与全局通讯等问题成为制约实现高性能计算的突出的瓶颈问题.因此,改造现有的隐式格式,研究适应于大型并行计算机的并行计算方法是目前大型科学与工程计算中迫切需要解决的具有挑战性的问题.本文简要介绍基于界面修正的迭代并行计算格式的构造及基本性质.所提出的并行格式的构造方法是将预测-校正技术应用于分区子区域的内边界,且与子区域内部的迭代求解相结合,讨论了这些并行格式的稳定性、收敛性与并行度等性质. 相似文献
10.
介绍在TMS320C5410上尝试MATLAB语言编程实现FIR数字滤波器的方案,阐明其开发基本原理,并给出了具体程序实例。 相似文献
11.
A. Gersborg-Hansen M. P. Bendsøe O. Sigmund 《Structural and Multidisciplinary Optimization》2006,31(4):251-259
This note addresses the use of the finite volume method (FVM) for topology optimization of a heat conduction problem. Issues
pertaining to the proper choice of cost functions, sensitivity analysis, and example test problems are used to illustrate
the effect of applying the FVM as an analysis tool for design optimization. This involves an application of the FVM to problems
with nonhomogeneous material distributions, and the arithmetic and harmonic averages have here been used to provide a unique
value for the conductivity at element boundaries. It is observed that when using the harmonic average, checkerboards do not
form during the topology optimization process.
Preliminary results of the work reported here were presented at the WCSMO 6 in Rio de Janeiro 2005, see Gersborg-Hansen et
al. (2005b). 相似文献
12.
13.
《国际计算机数学杂志》2012,89(8):1060-1082
This paper is devoted to the numerical approximation of a nonlinear parabolic balance equation, which describes the heat evolution of a magnetically confined plasma in the edge region of a tokamak. The nonlinearity implies some numerical difficulties, in particular for the long-time behaviour approximation, when solved with standard methods. An efficient numerical scheme is presented in this paper, based on a combination of a directional splitting scheme and the implicit–explicit scheme introduced in Filbet and Jin [A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources, J. Comput. Phys. 229 (2010), pp. 7625–7648]. 相似文献
14.
《国际计算机数学杂志》2012,89(8):1697-1713
We investigate an application of the method of fundamental solutions (MFS) to heat conduction in two-dimensional bodies, where the thermal diffusivity is piecewise constant. We extend the MFS proposed in Johansson and Lesnic [A method of fundamental solutions for transient heat conduction, Eng. Anal. Bound. Elem. 32 (2008), pp. 697–703] for one-dimensional heat conduction with the sources placed outside the space domain of interest, to the two-dimensional setting. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate results can be obtained efficiently with small computational cost. 相似文献
15.
Guang-an Zou 《Computers & Mathematics with Applications》2018,75(11):4135-4150
In this study, a Galerkin finite element method is presented for time-fractional stochastic heat equation driven by multiplicative noise, which arises from the consideration of heat transport in porous media with thermal memory with random effects. The spatial and temporal regularity properties of mild solution to the given problem under certain sufficient conditions are obtained. Numerical techniques are developed by the standard Galerkin finite element method in spatial direction, and Gorenflo–Mainardi–Moretti–Paradisi scheme is applied in temporal direction. The convergence error estimates for both semi-discrete and fully discrete schemes are established. Finally, numerical example is provided to verify the theoretical results. 相似文献
16.
《国际计算机数学杂志》2012,89(11):1555-1568
We propose and investigate an application of the method of fundamental solutions (MFS) to the radially symmetric and axisymmetric backward heat conduction problem (BHCP) in a solid or hollow cylinder. In the BHCP, the initial temperature is to be determined from the temperature measurements at a later time. This is an inverse and ill-posed problem, and we employ and generalize the MFS regularization approach [B.T. Johansson and D. Lesnic, A method of fundamental solutions for transient heat conduction, Eng. Anal. Boundary Elements 32 (2008), pp. 697–703] for the time-dependent heat equation to obtain a stable and accurate numerical approximation with small computational cost. 相似文献
17.
Different non-Fourier models of heat conduction, that incorporate time lags in the heat flux and/or the temperature gradient, have been increasingly considered in the last years to model microscale heat transfer problems in engineering. Numerical schemes to obtain approximate solutions of constant coefficients lagging models of heat conduction have already been proposed. In this work, an explicit finite difference scheme for a model with coefficients variable in time is developed, and their properties of convergence and stability are studied. Numerical computations showing examples of applications of the scheme are presented. 相似文献
18.
Huifang Zhou Zhiqiang Sheng Guangwei Yuan 《Computers & Mathematics with Applications》2019,77(4):1055-1070
In this paper, we present a boundedness preserving finite volume scheme for the Nagumo equation. In this method, we use the implicit Euler method for the time discretization, and construct a maximum-principle-preserving discrete normal flux for the diffusion term. For the nonlinear reaction term, we design a type of Picard iteration to ensure that at each iterative step it keeps physical boundedness. Moreover we prove that the numerical solution of the resulting scheme can preserve the bound of the solution for the Nagumo equation on distorted meshes. Some numerical results are presented to verify the theoretical analysis. 相似文献
19.
M. C. Ciccoli 《Journal of scientific computing》1996,11(4):299-341
Poor performances can be obtained from classical domain decomposition algorithms to solve advection-diffusion equations in the case of convection dominated flows. Therefore, adaptive domain decomposition have been developed for such flows. We investigate the properties of some algorithms of this kind in the framework of a finite volume/finite element discretization.This research was carried out while the author was visiting the Group of Applied Mathematics and Simulation of CRS4, and was supported by an HCM fellowship. 相似文献
20.
《国际计算机数学杂志》2012,89(11):1540-1554
In this paper, we investigate a variational method for a multi-dimensional inverse heat conduction problem in Lipschitz domains. We regularize the problem by using the boundary element method coupled with the conjugate gradient method. We prove the convergence of this scheme with and without Tikhonov regularization. Numerical examples are given to show the efficiency of the scheme. 相似文献