首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microassembly systems are a class of representative optomechatronic systems that play a critical role in the fabrication, packaging, and interconnection of hybrid microsystems such as hybrid microelectromechanical systems. Optomechatronic integration is essential to the development of microassembly systems due to the basic importance of microscope optics to microassembly. In this paper, the role of microscope optics in microassembly systems is analyzed. The general architecture of microassembly systems is introduced. Unique properties of microscale optomechatronics that differ from macroscale optomechatronics are summarized. These fundamental differences motivate the definition and discussion of microoptomechatronics. Major methodology issues in optomechatronic design of microassembly systems are introduced using examples. A wavelet-based microscopic image segmentation technique is presented to demonstrate the strength of using the unique properties of microoptomechatronics in microscopic image information processing.  相似文献   

2.
The traditional approach for the development of manufacturing systems considers the constituent parts of the system, i.e., mechanical, electronic, and software, to be developed independently and then integrated to form the final system. This approach is being criticized as inappropriate for the complexity and the dynamics of today's systems. This paper proposes an architecture that promotes model integration not only for implementation space artifacts but also in artifacts of the early analysis and design phases of the development process. The proposed architecture, which promotes reuse and significantly decreases development and validation time, is at the heart of a new paradigm called model-integrated mechatronics (MIM). MIM applies domain-specific modeling languages for the concurrent engineering of mechanical, electronic and software components of mechatronic systems. It simplifies the integrated development process of manufacturing systems by using as basic construct the mechatronic component. The MIM paradigm was utilized to define "Archimedes," a system platform that supports the engineer through a methodology, a framework, and a set of tools to automate the development process of agile mechatronic manufacturing systems.  相似文献   

3.
A novel measuring system for optical distance sensing of solid targets is described. The system simply applies a noise-frequency-modulated laser diode for illuminating the target and an interferometer/photodetector device for coherent beam detection. This configuration is treated here as an optomechatronic correlator. The delay in travel time of the target beam in the interferometer yields a stochastically modulated electrical beat frequency in the photodetector output. Its mean frequency value is a measure for the target distance. Additionally to the required stochastic modulation of the injection current, the natural phase noise modulation of the laser diode also has to be taken into account. Theory delivers nonlinear measurement characteristics with strongly increased slope at the short-distance range. The experimental verification in a distance range up to 4 m shows a relative distance measurement error from$hbox10^-3$to$hbox10^-2(1sigma)$for an averaging time range from 10 to 1 s. The system is potentially qualified for approach sensing in mechatronic devices like tool machinery and robotics.  相似文献   

4.
Solving a complex problem often requires a way to break it down into smaller, interconnected and manageable sub-problems, and then to join them together. The concept of breaking down a problem into smaller pieces is generally referred to as decomposition. The design of mechatronic systems is an example of such complex problems, as it is based on the integration of several disciplines, such as mechanical, electrical and software engineering. Decomposition is thus a common technique to help designers to obtain solutions for the design of mechatronic systems during the systems engineering process. However, an effective decomposition method which can fully solve the design problems of mechatronic systems has not yet been proposed in systems engineering.The goal of the paper is to formalise this decomposition method based on an interface model. This method is applicable to the architecture definition in the context of the design of mechatronic systems during their conceptual design phase. The proposed decomposition method provides designers with high-level guidance to help them to achieve the appropriate hierarchies and granularities for the architecture of mechatronic systems. The proposed decomposition method is applied and demonstrated using the systems engineering practices of a 3D measurement system.  相似文献   

5.
Perceiving mechanical stimuli and converting them into bioelectric signals to complete sensing information transmission and computation is a fundamental mechanism for survival and evolution of natural animals. This leads to a variety of intelligent behaviors, such as processing, learning, judgment, feedback, and so on when tackling complex and changeable environmental challenges. Until now, the realization of a bionic system to mimic the above activities has long been an important goal which is mainly based on the integration of distributed functional units, lacking the coordination between functional units and the whole systems. Herein, based on the mechano-electronic coupling effect of liquid metals and by following the basic principle of perception and transduction of piezo proteins, a biomimetic functional liquid metal mechatronic device is proposed with the switching behavior via establishing the reversible charge gradient. Owing to flexible features of liquid metals, this all-soft mechatronic device exhibits excellent compliance with the whole system. Based on electrochemical characteristics of liquid metals, the passive intelligent device demonstrates versatile behaviors, such as self-energy supply, encoding, computation, sensing, information identification, communicating, and controlling functions etc. which can only possibly be achieved by living animals. This work opens a new strategy for developing intelligent mechatronic systems.  相似文献   

6.
《Mechatronics》2006,16(1):33-39
In this paper some design concept for mechatronic components used in transmission systems with ER fluid based on the testing of physical models is proposed. The proposed design concept of mechatronic components of a transmission system was used to control a viscous brake where application of various ER fluids was considered in order to vary its performance. The main problem was to investigate whether changes of rheological characteristics due to the application of different fluids correspond to changes of torque carried by the brake throughout the entire range of angular velocities.Based on the brake testing results it was concluded that the results obtained for one working fluid could be successfully used for the design of a brake with an ER fluid having different rheological characteristics.  相似文献   

7.
System integration is clearly a driving force for innovation in packaging. The need for miniaturization has led to new architectures that combine disparate technologies and materials. Today several different approaches have been developed. These include technologies like system in package. In this way, a new concept for heterogeneous integration is currently being developed at CEA-LETI and is called system on wafer (SoW). This concept is based on a chip to wafer approach. Every component is achieved by using wafer-level technologies, and the final system is performed by single component mounting on a silicon substrate. The main strength of this approach is to use silicon as a substrate for components and for basic support. To perform the SoW, a generic technological toolbox is needed. This includes every standard packaging technology such as flip chip, signal rerouting, and passive component integration as well as new advanced technologies such as microelectromechanical systems packaging, advanced interconnections, energy source integration, integrated cooling, or silicon through vias. In this paper, the SoW concept will be presented and the generic toolbox for SoW achievement will be described.   相似文献   

8.
随着微加工技术和微分析技术的发展,人们已经可以把大型的机电系统或者光学系统微型化并进行某种程度的集成.但是,由于光学元件和光学系统对微结构的材料性能、几何尺寸和表面质量等都有极为苛刻的要求,光学系统特别是自由空间光学系统的微型化仍然面临巨大的技术挑战.提出一种基于表面压印和三维铸模技术的自由空间光学系统集成技术,该技术解决了光学元件的微型化及层内和层间的光学互联;在此基础上,结合MEMS技术、印刷电路(PCB)和表面贴装(SMD)技术实现了片上的光机电混合集成.  相似文献   

9.
The integration of mechanical systems and microelectronics opens many new possibilities for process design and automatic functions. After discussing the mutual interrelations between the design of the mechanical system and digital electronic system the different ways of integration within mechatronic systems and the resulting properties are described. The information processing can be organized in multi levels, ranging from low level control through supervision to general process management. In connection with knowledge bases and inference mechanisms, intelligent control systems result. The design of control systems for mechanical systems is described, from modeling, identification to adaptive control for nonlinear systems. This is followed by solving supervision tasks with fault diagnosis. Then design tools for mechatronic systems are considered and examples of applications are given, like adaptive control of electromagnetic and pneumatic actuators, adaptive semiactive shock absorbers for vehicle suspension, and electronic drive-chain damping.  相似文献   

10.
11.
Automated visual inspection (AVI) systems have been extended to many fields, such as agriculture and the food, plastic and textile industries. Generally, most visual systems only inspect product defects, and then analyze and grade them due to the lack of any sorting function. This main reason rests with the difficulty of using the image data in real time. However, it is increasingly important to either sort good products from bad or grade products into separate groups using AVI systems. This article describes the development of a mechatronic sorting system and its integration with a vision system for automatically removing contaminants from wool in real time. The integration is implemented by a personal computer, which continuously processes live images under the Windows 2000 operating system. The developed real-time sorting approach is also applicable to many other AVI systems.  相似文献   

12.
Sensor technologies and microsensor issues for mechatronics systems   总被引:3,自引:0,他引:3  
Intelligence and flexibility are essential in a mechatronic product. To achieve the primary function of an integrated system, it is essential that the functional interaction and spatial integration between mechanical, electronic, control, and information technologies be accomplished in a synergistic way. Sensors are as important in the mechatronic system as the senses are to the human being. While the subject of sensors and the need of sensors are certainly important, it is also both pervasive and diffuse. This paper cannot in any sense be exhaustive of such a wide range of discussion, and will only attempt to discuss sensors related to mechatronics. In this paper, the role of sensors in the field of mechatronics has been identified, followed by the characterization of different sensing technologies. The discussion of microsensor technologies, advantage of microsensors, and problems with microsensors together with multisensor fusion applications is presented. An example of a capacitive micro proximity sensor using micromachining technology developed by the Center of Robotics and Intelligent Machines at North Carolina State University is also described.  相似文献   

13.
This paper reports on an experimental system of an integrated communication network built with components representing the state-of-the-art in the area of optical fiber transmission and large-scale integration of logic functions. These components make it possible to apply new concepts for signal processing, transmission, and switching in the experimental system. The large bandwidth of optical channels allows the transmission of all kinds of communication services including data, audio, and video, while semiconductor technology offers low cost realization and mass production of complex signal processing and switching functions to handle all these services within one network. The concept of the system is presented and results on system components and subsystems are given.  相似文献   

14.
Concepts of mechatronics are applicable in the design of complex and multi-domain dynamic systems. This paper presents an approach based on the mechatronic design quotient (MDQ) for systematic design of a mechatronic system. Traditional procedures of design are hierarchically separated into topological design and parametric design. Extending this concept, an MDQ may be “structured” into a multi-layered hierarchy. The approach and significance of the application of MDQ in mechatronic design are indicated using illustrative examples.  相似文献   

15.
This paper presents an optomechatronic system which can detect, by triangulation, the position of a light point source, fastened onto a robot part. The sensing system consists of two positioning modules for optical transducers, which automatically follow the direction of the light point source. The system control is accomplished by means of data acquisition boards and LabVIEW programming.  相似文献   

16.
Integrated optical sensors make use of a p-n-junction for light intensity detection, typically. Because of the costs, additional optical components are not available in standard integration processes. Therefore, in higher level optical sensors extra optical components are not part of an integration. In this paper a concept for integration is proposed, which especially allows to measure the angles of a far distance light source relative to the surface of the chip and the coordinate system of the integrated structure. The invention makes use of the stack topology and the light opacity of metal layers in the monolithic integration, the light translucency of , and the electrical light sensitivity of diodes. Because of perfect device isolation the implementation can be done most advantageously in SOI CMOS technology. With minor modifications it is applicable in other integration technologies as well. But leakage currents and device mismatching will limit the obtainable performance additionally.  相似文献   

17.
Multiple quantum well (MQW) waveguide modulators   总被引:1,自引:0,他引:1  
Because the electroabsorption effect in semiconductor multiple quantum well material is approximately 50 times larger than in bulk semiconductors, significant interest has been generated in the use of MQW's in optical modulators. Small high-speed devices have been made which show promise for external modulators in optical transmission systems, as well as for encoding and processing components in optical interconnect and signal processing systems. The fact that these modulators are made from III-V semiconductors had led to interest in integration of these components with other active optoelectronic components. Although most devices have operated with light of a wavelength of 0.85 μm, recently much progress has been made in applying this technology to devices operating near 1.55 μm. The author reviews the work of the last few years in this field and indicates some future directions  相似文献   

18.
we report on a hybrid integration approach that represents a paradigm shift from traditional optoelectronic integration and packaging methods. A recent metamorphosis and wider availability of silicon on sapphire CMOS VLSI technology is generating a great deal of excitement in the optoelectronic systems community as it offers simple and elegant solutions to the many system integration and packaging challenges that one faces when employing bulk silicon CMOS technologies. In the bulk silicon CMOS processes that are used for high-speed interface electronics the substrate is absorbing at both 850 nm and 980 nm wavelengths, necessitating complex and expensive integration procedures such as VCSEL substrate removal to enable the implementation of optical vias through the substrate. Working together, the optical transparency of the sapphire substrate, its superb thermal conductivity and the excellent high speed device characteristics of silicon-on-sapphire CMOS circuits make this technology an excellent choice for cost effective optoelectronic Die-AS-Package (DASP) systems and for implementing optical interconnects for high performance computer architectures. What is perhaps even more important, packaging and input/output interface issues can now be addressed at the CMOS wafer fabrication level where input/output structures can be accurately defined, optimized and processed using lithographic techniques, eliminating problematic die post-processing and packaging-related optical alignment issues  相似文献   

19.
《Mechatronics》1999,9(5):539-552
The current trends in development and deployment of advanced electromechanical systems have facilitated the unified activities in the analysis and design of state-of-the-art motion devices, electric motors, power electronics, and digital controllers. This paper attacks the motion control problem (stabilization, tracking, and disturbance attenuation) for mechatronic systems which include permanent-magnet DC motors, power circuity, and motion controllers. By using an explicit representation of nonlinear dynamics of motors and switching converters, we approach and solve analysis and control problems to ensure a spectrum of performance objectives imposed on advanced mechatronic systems. The maximum allowable magnitude of the applied armature voltage is rated, the currents are limited, and there exist the lower and upper limits of the duty ratio of converters. To approach design tradeoffs and analyze performance (accuracy, settling time, overshoot, stability margins, and other quantities), the imposed constraints, model nonlinearities, and parameter variations are thoroughly studied in this paper. Our goal is to attain the specified characteristics and avoid deficiencies associated with linear formulation. To solve these problems, an innovative controller is synthesized to ensure performance improvements, robust tracking, and disturbance rejection. One cannot neglect constraints, and a bounded control law is designed to improve performance and guarantee robust stability. The offered approach uses a complete nonlinear mechatronic system dynamics with parameter variations, and this avenue allows one to avoid the conservative results associated with linear concept when mechatronic system dynamics is mapped by a linear constant-coefficient differential equation. To illustrate the reported framework and to validate the controller, analytical and experimental results are presented and discussed. In particular, comprehensive analysis and design with experimental verification are performed for an electric drive. A nonlinear bounded controller is designed, implemented, and experimentally tested.  相似文献   

20.
《Mechatronics》2014,24(3):231-240
Most methodologies for the design and analysis of mechatronic systems target a single product. From a business perspective, successful product development requires shortening development times, reducing engineering costs and offering a greater variety of product options for customers. In software engineering, the software product line (SPL) technology has been developed to meet these conflicting goals, and several major companies have reported success stories resulting from SPL adoption. In mechanical engineering, similar methodologies have been developed under the name of product platforms. Methodologies for analyzing product qualities such as safety or reliability have been introduced for both SPL and product platforms. The problem with these methodologies is that they consider either software or mechanical product design, so they do not guide developers to find the best balance between the controller and the equipment to be controlled. Several system properties of a mechatronic product line should be investigated with mechatronic analysis methodologies before the development process branches to software, electronic and mechanical design. In particular, safety is one system property that can only be analyzed by considering both the equipment and its controller, so mechatronic methodologies early in the design are advantageous for discovering safety-related design constraints before costly design commitments are made. This paper extends the Functional Failure Identification and Propagation (FFIP) framework to the safety analysis of a mechatronic product line with options in software signal connections and equipment. The result of applying FFIP is that unsafe combinations of options are removed from the product line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号