首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of sodium-calcium exchanger in calcium homeostasis in Bergmann glial cells in situ was investigated by monitoring cytoplasmic calcium ([Ca2+]i) and sodium ([Na+]i) concentrations. The [Ca2+]i and [Na+]i transients were measured either separately by using fluorescent indicators fura-2 and SBFI, respectively, or simultaneously using the indicators fluo-3 and SBFI. Since the removal of extracellular Na+ induced a relatively small (approximately 50 nM) elevation of [Ca2+]i, the Na+/Ca2+ exchanger seems to play a minor role in regulation of resting [Ca2+]i. In contrast, kainate-triggered [Ca2+]i increase was significantly suppressed by lowering of the extracellular Na+ concentration ([Na+]o). In addition, manipulations with [Na+]o dramatically affected the recovery of the kainate-induced [Ca2+]i transients. Simultaneous recordings of [Ca2+]i and [Na+]i revealed that kainate-evoked [Ca2+]i transients were accompanied with an increase in [Na+]i. Moreover, kainate induced significantly larger [Ca2+]i and smaller [Na+]i transients under current-clamp conditions as compared to those recorded when the membrane voltage was clamped at -70 mV. The above results demonstrate that the Na(+)-Ca2+ exchanger is operative in Bergmann glial cells in situ and is able to modulate dynamically the amplitude and kinetics of [Ca2+]i signals associated with an activation of ionotropic glutamate receptors.  相似文献   

2.
The relationship between changing driving force of the Na+/Ca2+-exchanger (deltaG(exch)) and associated cytosolic calcium fluxes was studied in rat ventricular myocytes. DeltaG(exch) was abruptly reversed by the reduction of extracellular sodium ([Na+]o) with or without sustained depolarization by the elevation of potassium ([K+]o). Cytosolic sodium ([Na+]i) and calcium ([Ca2+]i) were measured with SBFI and indo-1 respectively and the time course of recovery of deltaG(exch) was calculated. Following abrupt reversal of deltaG(exch) from +4.1 to -9.2 kJ/mol [Na+]i exponentially decreased from 9.6-2.5 mmol/l (t(1/2) about 30 s) and [Ca2+]i transiently increased to a peak value after about 30 s. Negative values of deltaG(exch) were associated with an increase and positive values with a decrease of [Ca2+]i. Equilibrium (deltaG(exch) = 0) was reached after about 30 s coinciding with the time to peak [Ca2+]i. After 180 s deltaG(exch) reached a new steady state at +3.5 kJ/mol. Inhibition of SR with ryanodine or thapsigargin reduced the amplitude of the [Ca2+]i transient and shifted its peak to 80 s, but did not affect the time course of [Na+]i changes. In the presence of ryanodine or thapsigargin the time required for deltaG(exch) to recover to equilibrium was also shifted to 80 s. When we changed the deltaG(exch) to the same extent by the reduction of [Na+]o in combination with a sustained depolarization, [Na+]i decreased less and the amplitude of [Ca2+]i transient was much enhanced. This increase of [Ca2+]i was completely abolished by verapamil. DeltaG(exch) only recovered to a little above equilibrium (+1 kJ/mol). Inhibition of the Na+/K+-ATPase with ouabain entirely prevented the decrease of [Na+]i and caused a much larger increase of [Ca2+]i, which remained elevated; deltaG(exch) recovered to equilibrium and never returned to positive values. The rate of change of total cytosolic calcium was related to deltaG(exch), despite the fact that the calcium flux associated with the exchanger itself contributed only about 10%; SR related flux contributed by about 90% to the rate of change of total cytosolic calcium. In summary, reduction of [Na+]o causes reversal of the Na+/Ca2+-exchanger and its driving force deltaG(exch), a transient increase of [Ca2+]i and a decrease of [Na+]i. The influx of calcium associated with reversed deltaG(exch) triggers the release of calcium from SR. Both the decrease of [Na+]i and the increase of [Ca2+]i contribute to the recovery of deltaG(exch) to equilibrium. The time at which deltaG(exch) reaches equilibrium always coincides with the time to peak of [Ca2+]i transient. Activation of the Na+/K+-ATPase is required to reduce [Na+]i and recover deltaG(exch) to positive values in order to reduce [Ca2+]i. We conclude that deltaG(exch) is a major regulator of cytosolic calcium by interaction with SR.  相似文献   

3.
The effect(s) of a prototypic intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), on glutamate-induced neurotoxicity was investigated in primary cultures of mouse cerebellar granule cells. Glutamate evoked an increase in cytosolic free-Ca2+ levels ([Ca2+]i) that was dependent on the extracellular concentration of Ca2+ ([Ca2+]o). In addition, this increase in [Ca2+]i correlated with a decrease in cell viability that was also dependent on [Ca2+]o. Glutamate-induced toxicity, quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, was shown to comprise two distinct components, an "early" Na+/Cl(-)-dependent component observed within minutes of glutamate exposure, and a "delayed" Ca(2+)-dependent component (ED50 approximately 50 microM) that coincided with progressive degeneration of granule cells 4-24 h after a brief (5-15 min) exposure to 100 microM glutamate. Quantitative analysis of cell viability and morphological observations identify a "window" in which TMB-8 (at > 100 microM) protects granule cells from the Ca(2+)-dependent, but not the Na+/Cl(-) -dependent, component of glutamate-induced neurotoxic damage, and furthermore, where TMB-8 inhibits glutamate-evoked increases in [Ca2+]i. These findings suggest that Ca2+ release from a TMB-8-sensitive intracellular store may be a necessary step in the onset of glutamate-induced excitotoxicity in granule cells. However, these conclusions are compromised by additional observations that show that TMB-8 (1) exhibits intrinsic toxicity and (2) is able to reverse its initial inhibitory action on glutamate-evoked increases in [Ca2+]i and subsequently effect a pronounced time-dependent potentiation of glutamate responses. Dantrolene, another putative intracellular Ca2+ antagonist, was completely without effect in this system with regard to both glutamate-evoked increases in [Ca2+]i and glutamate-induced neurotoxicity.  相似文献   

4.
5.
Ouabain-induced changes of the free cytoplasmic Na+ concentration ([Na+]i) were monitored in aggregates of cells prepared from beta-cell-rich pancreatic mouse islets and the results were compared with the total islet content of sodium. The steady-state [Na+]i was lower in 20 mM glucose (11 mM) than in 3 mM glucose (14 mM). In the presence of 3 mM glucose the addition of 1 mM ouabain resulted in a rise in [Na+]i with an initial rate of 1.5 mM/min. However, the increase of total sodium corresponded to 2.8 mM/min, suggesting that rapid binding and/or sequestration of Na+ are prominent features for pancreatic beta-cells. Elevation of the glucose concentration to 20 mM increased the rate of ouabain-dependent rise of [Na+]i. The effect of glucose was mimicked by 1 mM tolbutamide or 100 microM carbachol and was counteracted by 100 nM of the alpha 2-adrenergic agonist clonidine. Glucose also accelerated the lowering of [Na+]i after withdrawal of ouabain. In promoting not only the entry but also the extrusion of Na+, glucose actually enhances the turnover of the ion in pancreatic beta-cells.  相似文献   

6.
Intracellular calcium ([Ca2+]i) and hydrogen ion concentrations (pHi) are important regulators of cell function. Those ions also may interact and it is important, therefore, to measure their concentrations simultaneously. In the present studies we used a system developed for that purpose, a fluorescent emission ratio technique for simultaneous analysis of calcium (Indo-1) and pH (SNARF-1) in single cells at video rates, and determined if arginine vasopressin (AVP, 12.5 mumol/l) evoked [Ca2+]i and pHi signals interact in MDCK cells. We also employed a simple system for analysing the side specific (basolateral or apical) application of agonist to polarized cell layers on permeable membranes. AVP is found to evoke simultaneous changes in both pHi and [Ca2+]i. Basolateral application induced transient acidification, followed by partial recovery, and a [Ca2+]i transient with kinetic pattern similar to that of the pHi. Apical application also caused a mirror image pHi and [Ca2+]i pattern but of smaller magnitude (no peak). Selective removal of extracellular calcium ([Ca2+]e) or sodium ([Na+]e) dissociated the pHi and [Ca2+]i responses in both cases. Na+e removal abolished the pHi changes, but not the [Ca2+]i transients. [Ca2+]e removal abolished the [Ca2+]i changes and reduced, but did not abolish, the pHi responses. Thus, AVP induces pHi changes which are modified by calcium while calcium signalling is not modified by changes in pHi.  相似文献   

7.
We recently showed that the C-terminal fragment PTH (52-84) effectively increases intracellular free calcium ([Ca2+]i) in a subset of growth plate chondrocytes not activated by the N-terminal PTH fragment (1-34). Here we characterize the active site on C-terminal PTH (52-84) with respect to calcium (Ca2+)-signaling and the mechanism involved by using synthetic PTH-subfragments in digital CCD ratio-imaging experiments. Our results show amino acids 73-76 to be the core region for increasing [Ca2+]i. Ryanodine (1 microM), caffeine (10 mM), lithium (2 mM), or cyclopiazonic acid (2-5 microM), agents that interfere with intracellular Ca2+ release, all failed to block PTH (52-84) induced [Ca2+]i increases. Depletion of extracellular calcium ([Ca2+]o) blocked PTH (52-84) induced [Ca2+]i increases, indicating a transmembrane Ca2+ influx. In contrast to voltage-gated and Ca2+ release activated Ca2+ influx, PTH (52-84) evoked Ca2+ influx was not blocked by nickel (1 mM). We conclude that PTH amino acids 73-76 are essential for activation of a nickel-insensitive Ca2+ influx pathway in growth plate chondrocytes that is likely to be of relevance for matrix calcification, a key step in endochondral bone formation.  相似文献   

8.
A steep inwardly directed Na+ gradient is essential for glial functions such as glutamate reuptake and regulation of intracellular ion concentrations. We investigated the effects of glucose deprivation, chemical hypoxia, and simulated ischemia on intracellular Na+ concentration ([Na+]i) in cultured spinal cord astrocytes using fluorescence ratio imaging with sodium-binding benzofuran isophthalate (SBFI) AM. Glucose removal or chemical hypoxia (induced by 10 mM NaN3) for 60 min increased [Na+]i from a baseline of 8.3 to 11 mM. Combined glycolytic and respiratory blockage by NaN3 and 0 glucose saline caused [Na+]i to increase by 20 mM, similar to the [Na+]i increases elicited by blocking the Na+/K+-ATPase with ouabain. Recovery from large [Na+]i increases (>15 mM) induced by the glutamatergic agonist kainate was attenuated during glucose deprivation or NaN3 application and was blocked in NaN3 and 0 glucose. To mimic in vivo ischemia, we exposed astrocytes to NaN3 and 0 glucose saline containing L-lactate and glutamate with increased [K+] and decreased [Na+], [Ca2+], and pH. This induced an [Na+]i decrease followed by an [Na+]i rise and a further [Na+]i increase after reperfusion with standard saline. Similar multiphasic [Na+]i changes were observed after NaN3 and 0 glucose saline with only reduced [Na+]e. Our results suggest that the ability to maintain a low [Na+]i enables spinal cord astrocytes to continue uptake of K+ and/or glutamate at the onset of energy failure. With prolonged energy failure, however, astrocytic [Na+]i rises; with loss of their steep transmembrane Na+ gradient, astrocytes may aggravate metabolic insults by carrier reversal and release of acid, K+, and/or glutamate into the extracellular space.  相似文献   

9.
1. ATP (10-100 microM), but not glutamate (100 microM), stimulated the release of plasminogen from microglia in a concentration-dependent manner during a 10 min stimulation. However, neither ATP (100 microM) nor glutamate (100 microM) stimulated the release of NO. A one hour pretreatment with BAPTA-AM (200 microM), which is metabolized in the cytosol to BAPTA (an intracellular Ca2+ chelator), completely inhibited the plasminogen release evoked by ATP (100 microM). The Ca2+ ionophore A23187 induced plasminogen release in a concentration-dependent manner (0.3 microM to 10 microM). 2. ATP induced a transient increase in the intracellular calcium concentration ([Ca2+]i) in a concentration-dependent manner which was very similar to the ATP-evoked plasminogen release, whereas glutamate (100 microM) had no effect on [Ca2+]i (70 out of 70 cells) in microglial cells. A second application of ATP (100 microM) stimulated an increase in [Ca2+]i similar to that of the first application (21 out of 21 cells). 3. The ATP-evoked increase in [Ca2+]i was totally dependent on extracellular Ca2+, 2-Methylthio ATP was active (7 out of 7 cells), but alpha,beta-methylene ATP was inactive (7 out of 7 cells) at inducing an increase in [Ca2+]i. Suramin (100 microM) was shown not to inhibit the ATP-evoked increase in [Ca2+]i (20 out of 20 cells). 2'- and 3'-O-(4-Benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP), a selective agonist of P2X7 receptors, evoked a long-lasting increase in [Ca2+]i even at 1 microM, a concentration at which ATP did not evoke the increase. One hour pretreatment with adenosine 5'-triphosphate-2', 3'-dialdehyde (oxidized ATP, 100 microM), a selective antagonist of P2X7 receptors, blocked the increase in [Ca2+]i induced by ATP (10 and 100 microM). 4. These data suggest that ATP may transit information from neurones to microglia, resulting in an increase in [Ca2+]i via the ionotropic P2X7 receptor which stimulates the release of plasminogen from the microglia.  相似文献   

10.
Glutamate is the most prominent excitatory neurotransmitter in the retina and brain. It has become clear that the physiology of many glial cells, including retinal Müller cells, is modified by a host of neurotransmitters, including glutamate. The experiments presented here demonstrate that Müller cells isolated from the tiger salamander retina have metabotropic glutamate receptors that, when activated, lead to the release of calcium ions (Ca2+) from intracellular stores. The Ca2+-sensitive fluorescent dye, Fura-2, and video imaging microscopy were used to monitor changes in cytosolic calcium ion concentration ([Ca2+]i) evoked by glutamate (30-50 microM), (1S,3R)-ACPD (50-200 microM), quisqualate (10-50 microM), and L-AP4 (5-100 microM). Bath application of each of these metabotropic receptor agonists in the absence of extracellular Ca2+ resulted in an increase in [Ca2+]i that often began in the distal end of the cell and occurred later in the endfoot. This wavelike increase in [Ca2+]i is reminiscent of the Ca2+ waves evoked in these cells by other Ca2+ releasing agents such as ryanodine and caffeine. Extracellular application ofATP also evoked increases in [Ca2+] in Müller cells. The presence on Müller cells of receptors for retinal neurotransmitters, such as glutamate and ATP, demonstrates that these glial cells can respond to changes in the retinal extracellular environment and hence neuronal activity. Since Müller cells span almost all layers of the retina, they are likely to be exposed to most retinal neurotransmitters. The Ca2+ waves evoked in Müller cells by neurotransmitters could represent a form of signaling from the outer retinal layers to the inner ones.  相似文献   

11.
1. The block by ifenprodil of voltage-activated Ca2+ channels was investigated in intracellular free calcium concentration ([Ca2+]i) evoked by 50 mM K+ (high-[K+]o) in Fura-2-loaded rat hippocampal pyramidal neurones in culture and on currents carried by Ba2+ ions (IBa) through Ca2+ channels in mouse cultured hippocampal neurones under whole-cell voltage-clamp. The effects of ifenprodil on voltage-activated Ca2+ channels were compared with its antagonist actions on N-methyl-D-aspartate- (NMDA) evoked responses in the same neuronal preparations. 2. Rises in [Ca2+]i evoked by transient exposure to high-[K+]o in our preparation of rat cultured hippocampal pyramidal neurones are mediated predominantly by Ca2+ flux through nifedipine-sensitive Ca2+ channels, with smaller contributions from nifedipine-resistant, omega-conotoxin GVIA-sensitive Ca2+ channels and Ca2+ channels sensitive to crude funnel-web spider venom (Church et al., 1994). Ifenprodil (0.1-200 microM) reversibly attenuated high-[K+]o-evoked rises in [Ca2+]i with an IC50 value of 17 +/- 3 microM, compared with an IC50 value of 0.7 +/- 0.1 microM for the reduction of rises in [Ca2+]i evoked by 20 microM NMDA. Tested in the presence of nifedipine 10 microM, ifenprodil (1-50 microM) produced a concentration-dependent reduction of the dihydropyridine-resistant high-[K+]o-evoked rise in [Ca2+]i with an IC50 value of 13 +/- 4 microM. The results suggest that ifenprodil blocks Ca2+ flux through multiple subtypes of high voltage-activated Ca2+ channels. 3. Application of the polyamine, spermine (0.25-5 mM), produced a concentration-dependent reduction of rises in [Ca2+]i evoked by high-[K+]o. The antagonist effects of ifenprodil 20 micro M on high-[K+]0-evoked rises in [Ca2+]. were attenuated by spermine 0.25 mM but not by putrescine 1 or 5 mM. In contrast,spermine 0.1 mM increased rises in [Ca2+]i evoked by NMDA and enhanced the ifenprodil (5 micro M) block of NMDA-evoked rises in [Ca2+]i.4. Similar results were obtained in mouse cultured hippocampal pyramidal neurones under whole-cell voltage-clamp. Ifenprodil attenuated both the peak and delayed whole-cell IB. with an IC% value of 18 +/- 2 micro M, whilst it attenuated steady-state NMDA-evoked currents with an IC50 of 0.8 +/- 0.2 micro M. Block of IBa by ifenprodil 10 JaM was rapid in onset, fully reversible and occurred without change in thecurrent-voltage characteristics of Ba. The ifenprodil block of IBa was enhanced on membrane depolarization and was weakly dependent on the frequency of current activation. Spermine 0.1 mM potentiated control NMDA-evoked currents but attenuated IB,. In agreement with the microspectrofluorimetric studies, co-application of spermine produced a small enhancement of the inhibitory effect of ifenprodil 10 micro M on NMDA-evoked responses whereas the reduction of I4 by ifenprodil 10 micro M in the presence of spermine was less than expected if the inhibitory effects of ifenprodil and spermine on IBa were simply additive.5. The results indicate that ifenprodil blocks high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones. Although the Ca2+ channel blocking actions of ifenprodil are observed at higher concentrations than those associated with NMDA antagonist activity, Ca2+ channel blockade may contribute, at least in part, to the established neuroprotective and anticonvulsant properties of the compound.  相似文献   

12.
Sleep apnea syndrome in acromegalic patients]   总被引:1,自引:0,他引:1  
Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca2+ concentration ([Ca2+]i) in the CA1 pyramidal cell layer was measured. Hypoxia (oxygen-glucose deprivation) elicited a gradual increase in [Ca2+]i in normal Krebs solution. At high extracellular sodium concentrations ([Na+]o), the hypoxia-induced response was attenuated. In contrast, hypoxia in low [Na+]o elicited a significantly enhanced response. This exaggerated response to hypoxia at a low [Na+]o was reversed by pre-incubation of the slice at a low [Na+]o prior to the hypoxic insult. The attenuation of the response to hypoxia by high [Na+]o was no longer observed in the presence of antagonist to glutamate transporter. However, antagonist to Na+-Ca2+ exchanger only slightly influenced the effects of high [Na+]o. These observations suggest that disturbance of the transmembrane gradient of Na+ concentrations is an important factor in hypoxia-induced neuronal damage and corroborates the participation of the glutamate transporter in hypoxia-induced neuronal injury. In addition, the excess release of glutamate during hypoxia is due to a reversal of Na+-dependent glutamate transporter rather than an exocytotic process.  相似文献   

13.
Cannabinoid receptor agonists act presynaptically to inhibit the release of glutamate. Because other drugs with this action are known to reduce excitotoxicity, we tested several cannabimimetics in a model of synaptically mediated neuronal death. Reduction of the extracellular Mg2+ concentration to 0.1 mM evoked a repetitive pattern of intracellular Ca2+ concentration ([Ca2+]i) spiking that, when maintained for 24 hr, resulted in significant neuronal death. The [Ca2+]i spiking and cell death in this model result from excessive activation of N-methyl-D-aspartate receptors, as indicated by the inhibition of both [Ca2+]i spiking and neuronal death by the N-methyl-D-aspartate receptor antagonist CGS19755 (10 microM). The cannabimimetic drug Win55212-2 (100 nM) completely blocked [Ca2+]i spiking and prevented neuronal death induced by low extracellular Mg2+ concentrations. These effects on [Ca2+]i spiking and viability were stereoselective and were prevented by the CB1 receptor antagonist SR141716 (100 nM). The partial agonist CP55940 (100 nM) also afforded significant protection from excitotoxicity. Cannabimimetic drugs did not protect cells from the direct application of glutamate (30 microM). These data suggest that cannabimimetic drugs may slow the progression of neurodegenerative diseases.  相似文献   

14.
Secretory cells should in principle export substantial amounts of calcium via exocytosis since Ca2+ is sequestered in secretory granules. Based on a new technique for measurements of the extracellular calcium concentration in the vicinity of the cell membrane and on the droplet technique, we have monitored the rate of calcium extrusion from salivary gland acinar cells. Isoproterenol (ISP), a beta-adrenergic agonist and powerful secretogogue, evoked no change in the cytosolic free Ca2+ concentration ([Ca2+]i) but induced vigorous extracellular Ca2+ concentration ([Ca2+]i) spiking. The absence of [Ca2+]i elevation and the pulsatile nature of the changes in [Ca2+]i indicate that these spikes are most likely due to calcium release from secretory granules. The cholinergic agonist acetylcholine (ACh), which induces moderate secretion, evoked a marked rise in [Ca2+]i and a smooth rise in [Ca2+]i, most likely induced by plasma membrane calcium pumps, on which shortlasting [Ca2+]i spikes were superimposed. The rate of ISP-induced calcium efflux was very substantial. The calculated calcium loss during the first 100 s of supramaximal stimulation corresponded to a reduction of the total cellular calcium concentration of approximately 0.4 mM. We conclude that in salivary glands, calcium release via exocytosis is one of the main mechanisms extruding calcium from cells to the extracellular milieu.  相似文献   

15.
The present study was undertaken to examine the effects of diminished extracellular sodium concentration on the vascular action of arginine vasopressin (AVP) in cultured rat vascular smooth muscle cells (VSMC). The preincubation of cells with the 110 mM extracellular Na+ ([Na+]e) solution supplemented with 30 mM choline chloride for 60 minutes enhanced the effect of AVP- (1 x 10(-8) M) induced VSMC contraction. The treatment of 110 mM [Na+]e solution also enhanced the cellular contractile response to the protein kinase C (PKC) activators, phorbol 12-myristate 13-acetate and 1-oleoyl-2-acetyl-glycerol. Furthermore, preincubation with the 110 mM [Na+]e solution also potentiated the effect of 1 x 10(-8) M AVP, but not 1 x 10(-6) M, to increase the cytosolic-free Ca2+ ([Ca2+]i) concentration. The 110 mM [Na+]e media decreased the basal intracellular Na+ concentration and increased intracellular 45Ca2+ accumulation, basal [Ca2+]i and AVP-produced 45Ca2+ efflux. These effects of 110 mM [Na+]e solution to enhance the vascular action of AVP were abolished by using Ca(2+)-free 110 mM [Na+]e solution during the preincubation period. The preincubation with the 110 mM [Na+]e solution did not change either the Kd and Bmax of AVP V1 receptor of VSMC or the AVP-induced production of inositol 1,4,5-trisphosphate. The present in vitro results therefore indicate that the diminished extracellular fluid sodium concentration within a range observed in clinical hyponatremic states enhances the vascular action of AVP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. The possible role of intracellular Ca2+ levels ([Ca2+]i) in desensitization of nicotinic acetylcholine receptors (AChRs) was investigated in rat cultured chromaffin cells by use of combined whole-cell patch clamping and confocal laser scanning microscopy with the fluorescent dye fluo-3. 2. On cells held at -70 mV, pressure-application of nicotine elicited inward currents with associated [Ca2+]i rises mainly due to influx through nicotinic AChRs. These responses were blocked by (+)-tubocurarine (10 microM) but were insensitive to alpha-bungarotoxin (1 microM) or Cd2+ (0.1 mM). 3. Pressure applications of 1 mM nicotine for 2 s (conditioning pulse) evoked inward currents which faded biexponentially to a steady state level due to receptor desensitization and were accompanied by a sustained increase in [Ca2+]i. Inward currents evoked by subsequent application of brief test pulses of nicotine were depressed but recovered with a time course reciprocal to the decay of the [Ca2+]i transient induced by the conditioning pulse. 4. Omission of intracellular Ca2+ chelators or use of high extracellular Ca2+ solution (10 mM) lengthened recovery of nicotinic AChRs from desensitization while adding BAPTA or EGTA intracellularly had the opposite effect. When the patch pipette contained fluo-3 or no chelators, after establishing whole cell conditions the rate of recovery became progressively longer presumably due to dialysis of endogenous Ca2+ buffers. None of these manipulations of external or internal Ca2+ had any effect on onset or steady state level of desensitization. 5. High spatial resolution imaging of [Ca2+]i in intact cells (in the presence of 0.1 mM Cd2+) showed that its level in the immediate submembrane area decayed at the same rate as in the rest of the cell, indicating that Ca2+ was in a strategic location to modulate (directly or indirectly) AChR desensitization. 6. The present data suggest that desensitized nicotinic AChRs are stabilized in their conformation by raised [Ca2+]i and that this phenomenon retards their recovery to full activity.  相似文献   

17.
Hyposmotic swelling-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and their influence on regulatory volume decrease (RVD) were examined in rat cultured suspended cerebellar astrocytes. Hyposmotic media (50 or 30%) evoked an immediate rise in [Ca2+]i from 117 nM to a mean peak increase of 386 (50%) and 220 nM (30%), followed by a maintained plateau phase. Ca2+ influx through the plasmalemma as well as release from internal stores contributed to this osmosensitive [Ca2+]i elevation. Omission of external Ca2+ or addition of Cd2+, Mn2+, or Gd3+ did not reduce RVD, although it was decreased by La3+ (0.1-1 mM). Verapamil did not affect either the swelling-evoked [Ca2+]i or RVD. Maneuvers that deplete endoplasmic reticulum (ER) Ca2+ stores, such as treatment (in Ca2+-free medium) with 0.2 microM thapsigargin (Tg), 10 microM 2,5-di-tert-butylhydroquinone, 1 microM ionomycin, or 100 microM ATP abolished the increase in [Ca2+]i but did not affect RVD. However, prolonged exposure to 1 microM Tg blocked RVD regardless of ER Ca2+ content or cytosolic Ca2+ levels. Ryanodine (up to 100 microM) and caffeine (10 mM) did not modify [Ca2+]i or RVD. BAPTA-acetoxymethyl ester (20 microM) abolished [Ca2+]i elevation without affecting RVD, but at higher concentrations BAPTA prevented cell swelling and blocked RVD. We conclude that the osmosensitive [Ca2+]i rise occurs as a consequence of increased Ca2+ permeability of plasma and organelle membranes, but it appears not relevant as a transduction signal for RVD in rat cultured cerebellar astrocytes.  相似文献   

18.
High concentrations of Zn2+ are found in presynaptic terminals of excitatory neurons in the CNS. Zn2+ can be released during synaptic activity and modulate postsynaptic receptors, but little is known about the possibility that Zn2+ may enter postsynaptic cells and produce dynamic changes in the intracellular Zn2+ concentration ([Zn2+]i). We used fura-2 and magfura-2 to detect the consequences of Zn2+ influx in cultured neurons under conditions that restrict changes in intracellular Ca2+ and Mg2+ concentrations. The resulting ratio changes for both dyes were reversed completely by the Zn2+ chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine, indicating that these dyes are measuring changes in [Zn2+]i. We found that fura-2 was useful in measuring small increases in [Zn2+]i associated with exposure to Zn2+ alone that may be mediated by a Na+/Ca2+ exchanger. Magfura-2, which has a lower affinity for Zn2+, was more useful in measuring larger agonist-stimulated increases in [Zn2+]i. The coapplication of 300 microM Zn2+ and 100 microM glutamate/10 microM glycine resulted in a [Zn2+]i increase that was approximately 40-100 nM in magnitude and could be inhibited by the NMDA receptor antagonist, MK-801 (30 microM), or extracellular Na+. This suggests that Zn2+ influx can occur through at least two different pathways, leading to varying increases in [Zn2+]i. These findings demonstrate the feasibility of measuring changes in [Zn2+]i in neurons.  相似文献   

19.
The effects of the phospholipase C (PLC) inhibitor U73122 on intracellular calcium levels ([Ca2+]i) were studied in MDCK cells. U73122 elevated [Ca2+]i dose-dependently. Ca2+ influx contributed to 75% of 20 microM U73122-induced Ca2+ signals. U73122 pretreatment abolished the [Ca2+]i transients evoked by ATP and bradykinin, suggesting that U73122 inhibited PLC. The Ca2+ signals among individual cells varied considerably. The internal Ca2+ source for the U73122 response was the endoplasmic reticulum (ER) since the response was abolished by thapsigargin. The depletion of the ER Ca2+ store triggered a La3+-sensitive capacitative Ca2+ entry. Independently of the internal release and capacitative Ca2 entry, U73122 directly evoked Ca2+ influx through a La3+-insensitive pathway. The U73122 response was augmented by pretreatment of carbonylcyanide m-chlorophynylhydrozone (CCCP), but not by Na+ removal, implicating that mitochondria contributed significantly in buffering the Ca2+ signal, and that efflux via Na+/Ca2+ exchange was insignificant.  相似文献   

20.
During the first weeks of life, injury to the central nervous system caused by brief periods of oxygen deprivation greatly increases. To investigate possible causes for this change, the effects of hypoxia or application of the excitatory neurotransmitter glutamate on intracellular calcium ([Ca2+]i) and ATP were studied in rat cerebrocortical brain slices. [Ca2+]i was measured fluorometrically with the indicator Fura-2. Hypoxia (95% N2/5% CO2) or 100 microM sodium cyanide produced gradual elevations in [Ca2+]i and ATP depletion in slices from rats < 2 weeks old, but rapid changes in older rats. After 20 min, [Ca2+]i in adult slices exposed to cyanide was 1,980 +/- 310 nM; in day 1-14 animals, it was 796 +/- 181 nM (p < 0.05). Combination of cyanide and a glycolytic inhibitor (iodoacetate) rapidly elevated [Ca2+]i and depleted ATP in all age groups. Energy utilization during anoxia, assessed by measuring ATP fall in cyanide/iodoacetate-treated brain slices, increased with age. Elevations in [Ca2+]i caused by application of 500 microM glutamate increased 240% from days 1-2 to day 28, but ATP loss caused by glutamate did not change with age. The N-methyl-D-aspartate antagonist MK-801 delayed calcium entry during the initial 5-7 min of hypoxia or cyanide in rats < 2 weeks old. We conclude that anaerobic ATP production, conservation of energy by reduced ATP consumption, and reduced sensitivity to glutamate contribute to delaying elevation in [Ca2+]i in neonatal rat brain during hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号