首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported the generation of a library of hydrophobic oxazole-based small molecules designed as inhibitors of phosphatases involved in cellular signaling and cell cycle control. One member of the targeted array library, 4-(benzyl-(2-[(2, 5-diphenyl-oxazole-4-carbonyl)-amino]-ethyl)-carbamoyl)-2-decanoylami no butyric acid (SC-alphaalphadelta9), inhibited cell growth in the G0/G1 phase of the cell cycle. To investigate potential mechanisms for SC-alphaalphadelta9 antiproliferative activity, we have used mouse embryonic fibroblasts transformed with simian virus 40 large T antigen mouse embryonic fibroblasts as a model system for a malignant phenotype that depends on overexpression of cell cycle regulators and autocrine stimulation by insulin-like growth factor-1. Structure-activity relationship studies with SC-alphaalphadelta9 and four library congeners demonstrated that antiproliferative activity was not a result of overall hydrophobicity. Rather, SC-alphaalphadelta9 decreased insulin-like growth factor-1 receptor tyrosine phosphorylation, receptor expression, mitogen-activated protein kinase activation and levels of the cyclin-dependent kinase Cdc2. Less toxic congeners only partially affected receptor expression, receptor tyrosine phosphorylation and Cdc2 levels. Thus SC-alphaalphadelta9, which is structurally distinct from other known small molecules that decrease intracellular Cdc2 levels, has profound effects on intracellular signaling. Furthermore, SC-alphaalphadelta9, but not vanadate or okadaic acid, selectively inhibited the growth of simian virus 40 large T antigen mouse embryonic fibroblasts compared to the parental cells. These results suggest that overexpression of Cdc2 and increased dependence on insulin-like growth factor-1 autocrine stimulation are responsible for the increased sensitivity of simian virus 40 large T antigen mouse embryonic fibroblasts to SC-alphaalphadelta9. The SC-alphaalphadelta9 pharmacophore could be a useful platform for the development of novel antisignaling agents.  相似文献   

2.
The purpose of this research was to develop new in vitro methodology for measuring release from petrolatum-based semisolids and to determine whether two ointments, both of which contained betamethasone dipropionate, 0.05%, but with different formulations, could be distinguished by release measurements. Several receptor media were explored to optimize the procedure utilizing Franz-type cells. Analysis was by HPLC. The release slope was 1.5 to 6 times greater from the ointment than the "augmented" ointment (which had greater clinical potency). Release was highest with a receptor consisting of a 5% solution of hexane in acetonitrile. Even so, it was necessary to subject samples of receptor from the augmented ointment to evaporation followed by reconstitution with a smaller volume of mobile phase to bring corticosteroid concentrations up to quantifiable levels. In another series of experiments, the HPLC mobile phase was used as the receptor and a relatively large volume (100 microliters) was injected onto the column. With the second approach, measured concentrations were lower but more reproducible. Quantifiable levels of betamethasone dipropionate were obtained for both formulations beginning from the first data point (at 1 hr), with satisfactory linearity of plots of amount released per unit area of membrane versus the square root of time. Using this methodology, it was possible to distinguish the effect of formulation differences in two ointments containing the same drug in the same concentration.  相似文献   

3.
Adenosine A1 receptors as well as other components of the adenylate cyclase system have been studied in cultured cerebellar granule cells. No significant changes in adenosine A1 receptor number, assayed by radioligand binding in intact cells, were detected from 2 days in vitro (DIV) until 7 DIV. Nevertheless, a decline in this parameter was detected at 9 DIV. The steady-state levels of alpha-Gg and alpha-Gi, detected by immunoblotting, showed similar profiles, increasing from 2 to 5 DIV and decreasing afterward. Forskolin-stimulated adenylate cyclase levels also showed an increase until 5 DIV, decreasing at 7 and 9 DIV. The adenosine A1 receptor analogue cyclopentyladenosine (CPA) was able to inhibit cyclic AMP accumulation at 2, 5, and 7 DIV but failed to do so at 9 DIV. This inhibition was prevented by the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The presence of adenosine deaminase in the culture increased adenosine A1 receptor number during the period studied and induced recovery of the inhibitory effect of CPA, lost after 7 DIV. These data suggest that functional expression of adenosine A1 receptors and the other components of the adenylate cyclase system is subjected to regulation during the maturation of cultured cerebellar granule cells and demonstrates a key role for endogenous adenosine in the process.  相似文献   

4.
The role of the transvesicular protonmotive force in synaptic vesicle recycling was investigated in cultured cerebellar granule cells. The vesicular V-ATPase was inhibited by 1 microM bafilomycin A1; as an alternative, the pH component of the gradient was selectively collapsed by equilibration of the cells with 10 mM methylamine and monitored with the fluorescent probe Lysosensor Green. Electrical field-evoked exocytosis of D-[3H]aspartate was inhibited by bafilomycin A1 but not by methylamine, indicating that a transvesicular membrane potential rather than pH gradient is required for transmitter retention within vesicles. In contrast, neither compound affected the field-evoked uptake, recycling, or destaining of the vesicle-specific dye FM2-10; thus, vesicles whose lumens were neutral and/or depleted of transmitter could still recycle in the nerve terminal. No exhaustion of D-[3H]aspartate exocytosis was observed when cells were subjected to six consecutive trains of field stimuli (40 Hz/10 s separated by 10 s). In contrast, the release of preloaded FM2-10 was reduced by approximately 50%, with each stimulus indicating that unlabeled vesicles with accumulated D-[3H]aspartate were competing with labeled vesicles for exocytosis. As D-[3H]aspartate was accumulated rapidly across the vesicle membrane from the large cytoplasmic pool, the transmitter-loaded but unlabelled vesicles may represent refilled recycling vesicles. FM2-10 destaining and D-[3H]aspartate exocytosis were reduced in parallel at low frequencies, challenging a role for transient vesicle fusion.  相似文献   

5.
The effect(s) of a prototypic intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), on glutamate-induced neurotoxicity was investigated in primary cultures of mouse cerebellar granule cells. Glutamate evoked an increase in cytosolic free-Ca2+ levels ([Ca2+]i) that was dependent on the extracellular concentration of Ca2+ ([Ca2+]o). In addition, this increase in [Ca2+]i correlated with a decrease in cell viability that was also dependent on [Ca2+]o. Glutamate-induced toxicity, quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, was shown to comprise two distinct components, an "early" Na+/Cl(-)-dependent component observed within minutes of glutamate exposure, and a "delayed" Ca(2+)-dependent component (ED50 approximately 50 microM) that coincided with progressive degeneration of granule cells 4-24 h after a brief (5-15 min) exposure to 100 microM glutamate. Quantitative analysis of cell viability and morphological observations identify a "window" in which TMB-8 (at > 100 microM) protects granule cells from the Ca(2+)-dependent, but not the Na+/Cl(-) -dependent, component of glutamate-induced neurotoxic damage, and furthermore, where TMB-8 inhibits glutamate-evoked increases in [Ca2+]i. These findings suggest that Ca2+ release from a TMB-8-sensitive intracellular store may be a necessary step in the onset of glutamate-induced excitotoxicity in granule cells. However, these conclusions are compromised by additional observations that show that TMB-8 (1) exhibits intrinsic toxicity and (2) is able to reverse its initial inhibitory action on glutamate-evoked increases in [Ca2+]i and subsequently effect a pronounced time-dependent potentiation of glutamate responses. Dantrolene, another putative intracellular Ca2+ antagonist, was completely without effect in this system with regard to both glutamate-evoked increases in [Ca2+]i and glutamate-induced neurotoxicity.  相似文献   

6.
7.
8.
Previous work identified the phosphorylation by extracellular ATP of an endogenous 45-kDa protein substrate and established the presence of ecto-protein kinase activity associated with cultured cerebellar granule neurons (Volonté et al.: J Neurochem 63:2028-2037, 1994). In this work, we characterize such ecto-phosphorylated 45-kDa protein substrate and its association with the cellular membrane. The total radioactive content of the 45-kDa protein is stable for the first 15 min after phosphorylation, and decreases about 70% in 30 min and 90% in approximately 2 hr. Rinsing the cells after the phosphorylating reaction causes a 50% removal of the incorporated radioactivity. Glycosidic residues are present on the 45-kDa ecto-protein, which is held in position on the cellular membrane through a specific glycosyl-phosphatidylinositol anchor. The extracellular incorporation of phosphate on the 45-kDa protein is not modulated by agents interfering with cytoskeleton stability, such as colchicine and taxol, or by gangliosides. The extracellular phosphorylation occurs mostly on serine residues, since the phosphate ester linkage is unstable at high pH and only antibodies raised against phosphoserine are capable of recognizing the 45-kDa ecto-protein.  相似文献   

9.
The possible modulation of nitric oxide (NO) synthase (NOS) activity by protein kinase C (PKC) was investigated in primary cultures of rat cerebellar neurons. Incubation of the cells with L-arginine and nicotinamide-adenine dinucleotide phosphate (NADPH) produced detectable levels of NO, as quantified by photometric assay [0.14 +/- 0.03 nmol/h/dish (2.5 x 10(6) cells)]. The NO producing activity was paralleled by concomitant accumulation of cyclic GMP (cGMP) (0.12 +/- 0.02 pmol/dish). Downregulation of PKC by prolonged treatment with phorbol esters or inhibition of the kinase by treatment with 4taurosporine raised the basal levels of NO and cGMP five fold. When granule cells were incubated in the absence of extracellular Mg2+, N-methyl-D-aspartate and to a lesser extent, glutamate became effective in enhancing NO formation and cGMP accumulation with respect to the control. The NO and cGMP increases induced by the two agonists were almost doubled by treatment of the cells with staurosporine or depletion of PKC. Calphostin C. an inhibitor of the regulatory domain of PKC, was as effective as staurosporine in increasing the formation of NO in both resting and excited cells. These results indicate that downregulation or inhibition of PKC increase NOS activity in cerebellar neurons, and suggest that phosphorylation of NOS by PKC negatively modulates the catalytic activity of the enzyme in these cells.  相似文献   

10.
Some clues suggest that neuronal damage induces a secondary change of amyloid beta protein (Abeta) metabolism. We investigated this possibility by analyzing the secretion of Abeta and processing of its precursor protein (amyloid precursor protein, APP) in an in vitro model of neuronal apoptosis. Primary cultures of rat cerebellar granule neurons were metabolically labeled with [35S]methionine. Apoptosis was induced by shifting extracellular KCl concentration from 25 mM to 5 mM for 6 h. Control and apoptotic neurons were then subjected to depolarization-stimulated secretion. Constitutive and stimulated secretion media and cell lysates were immunoprecipitated with antibodies recognizing regions of Abeta, full-length APP, alpha- and beta-APP secreted forms. Immunoprecipitated proteins were separated by SDS/PAGE and quantitated with a PhosphorImager densitometer. Although intracellular full-length APP was not significantly changed after apoptosis, the monomeric and oligomeric forms of 4-kDa Abeta were 3-fold higher in depolarization-stimulated secretion compared with control neurons. Such increments were paralleled by a corresponding increase of the beta-APPs/alpha-APPs ratio in apoptotic secretion. Immunofluorescence studies performed with an antibody recognizing an epitope located in the Abeta sequence showed that the Abeta signal observed in the cytoplasm and in the Golgi apparatus of control neurons is uniformly redistributed in the condensed cytoplasm of apoptotic cells. These studies indicate that neuronal apoptosis is associated with a significant increase of metabolic products derived from beta-secretase cleavage and suggest that an overproduction of Abeta may be the consequence of neuronal damage from various causes.  相似文献   

11.
12.
At fast chemical synapses the rapid release of neurotransmitter that occurs within a few milliseconds of an action potential is followed by a more sustained elevation of release probability, known as delayed release. Here we characterize the role of calcium in delayed release and test the hypothesis that facilitation and delayed release share a common mechanism. Synapses between cerebellar granule cells and their postsynaptic targets, stellate cells and Purkinje cells, were studied in rat brain slices. Presynaptic calcium transients were measured with calcium-sensitive fluorophores, and delayed release was detected with whole-cell recordings. Calcium influx, presynaptic calcium dynamics, and the number of stimulus pulses were altered to assess their effect on delayed release and facilitation. Following single stimuli, delayed release can be separated into two components: one lasting for tens of milliseconds that is steeply calcium-dependent, the other lasting for hundreds of milliseconds that is driven by low levels of calcium with a nearly linear calcium dependence. The amplitude, calcium dependence, and magnitude of delayed release do not correspond to those of facilitation, indicating that these processes are not simple reflections of a shared mechanism. The steep calcium dependence of delayed release, combined with the large calcium transients observed in these presynaptic terminals, suggests that for physiological conditions delayed release provides a way for cells to influence their postsynaptic targets long after their own action potential activity has subsided.  相似文献   

13.
Recent evidence suggests that neuronal apoptosis is the consequence of an inappropriate reentry into the cell cycle. Expression of the cell cycle gene cyclin D1, a G1-phase cell cycle regulator, was examined in primary cultures of murine cerebellar granule cells (CGCs) during kainate (KA)-mediated apoptosis. Using cultures of CGCs, we found that a 24-h exposure to KA (1-3,000 microM) induced a concentration-dependent cell death with neurons exhibiting characteristic apoptotic morphology and extensive labeling using the terminal transferase-mediated nick end-DNA labeling (TUNEL) method. KA induced a time- and concentration-dependent increase in expression of cyclin D1 as determined by immunocytochemistry and western blot analysis. KA-induced apoptosis and cyclin D1 expression exhibited a similar concentration dependence and were significantly attenuated by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (50 microM), indicating a KA receptor-mediated effect. Here we present evidence for the first time that KA-induced apoptosis in cultured CGCs involves the induction of cyclin D1, suggesting its involvement in excitotoxic receptor-mediated apoptosis.  相似文献   

14.
The developmental expression of mRNAs encoding the GABAA receptor was analyzed in the rat cerebellar cortex and in cultured cerebellar granule neurons. Our studies in vivo reveal that the alpha 1-, beta 2-, and gamma 2-subunit mRNA levels in the cerebellar cortex rise dramatically during the second post-natal week, a period temporally correlated with extensive cerebellar maturation. To determine if these increases were preprogrammed or dependent on extrinsic factors, we examined subunit mRNA expression in granule cell cultures prepared at embryonic day 19 (E19) and postnatal day 10 (P10), immature and mature stages of cerebellar development, respectively. In E19 cultures, the alpha 1, beta 2, and gamma 2 GABAA receptor subunit mRNAs were present and their levels remained constant over the 21 d culture period. These results suggest that GABAA receptor gene expression is not intrinsic to the immature granule cells. A different pattern was found in P10 cultures where the three subunit mRNAs were initially present at levels approximately sixfold higher than those found at E19. The beta 2- and gamma 2-subunit mRNAs remained constant for 4 d and then increased sixfold between 4 and 7 d in culture. The magnitude and time course of these increases were similar to the developmental changes that occurred in vivo. Thus, our findings raise the possibility that signals encountered during development are necessary to induce GABAA receptor subunit mRNA expression. Moreover, these cues have been received by granule neurons prior to P10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In addition to an antigen-specific signal, T cell activation requires an antigen-independent costimulatory signal provided by interaction of CD28 with B7 (CD80 and CD86) on the APC. By blocking B7 interactions, previous studies demonstrated the requirement for costimulation in the induction of experimental allergic encephalomyelitis (EAE). Recent studies suggest that unlike CD28, CTLA-4 (a second B7 ligand) delivers an inhibitory signal. To address the regulatory role of CTLA-4 in EAE, we used an antibody directed against CTLA-4 administered at the time of disease induction. This resulted in a significantly more severe clinical course and more inflammatory and demyelinating lesions in the CNS of anti-CTLA-4-treated mice. These data suggest that CTLA-4-mediated inhibitory signals can regulate the clinical severity and histologic parameters of neuroautoimmune disease.  相似文献   

16.
The influence of low or high (10 or 25 mM) K(+)-induced membrane depolarization on the mRNA levels for NMDA receptor subunits was investigated by RNase protection assay in cultured rat cerebellar granule cells. Cells, maintained for 7 days in K25+, a condition that promotes their survival and maturation, express the highest levels of NR-1 and NR-2A mRNA, whereas NR-2B is maximally expressed in cells grown in K10+. Acute changes in medium K+ concentration had a significant effect on the mRNA levels for NMDA receptor subunits. A concomitant reduction of NR-2A mRNA and induction of NR-2B was observed following a 24-h shift of the culture medium from K25+ to K10+. Under these circumstances NR-2C, not detected in basal conditions, became expressed. Neuronal nitric oxide synthase, an enzyme linked to NMDA receptor activation, was also influenced by growth conditions. Its expression, higher under low excitation (K10+), is induced in the shift from K25+ to K10+ and is markedly decreased in the opposite situation. These data indicate that several factors may influence the expression of NMDA receptor subunits and consequently may modulate the function of this receptor complex and its adaptation to acute and chronic changes in neuronal activity.  相似文献   

17.
Excessive activation of N-methyl-D-aspartate (NMDA) receptor channels (NRs) is a major cause of neuronal death associated with stroke and ischemia. Cerebellar granule neurons in vivo, but not in culture, are relatively resistant to toxicity, possibly owing to protective effects of glia. To evaluate whether NR-mediated signaling is modulated when developing neurons are cocultured with glia, the neurotoxic responses of rat cerebellar granule cells to applied NMDA or glutamate were compared in astrocyte-rich and astrocyte-poor cultures. In astrocyte-poor cultures, significant neurotoxicity was observed in response to NMDA or glutamate and was inhibited by an NR antagonist. Astrocyte-rich neuronal cultures demonstrated three significant differences, compared with astrocyte-poor cultures: (a) Neuronal viability was increased; (b) glutamate-mediated neurotoxicity was decreased, consistent with the presence of a sodium-coupled glutamate transport system in astrocytes; and (c) NMDA- but not kainate-mediated neurotoxicity was decreased, in a manner that depended on the relative abundance of glia in the culture. Because glia do not express NRs or an NMDA transport system, the mechanism of protection is distinct from that observed in response to glutamate. No differences in NR subunit composition (evaluated using RT-PCR assays for NR1 and NR2 subunit mRNAs), NR sensitivity (evaluated by measuring NR-mediated changes in intracellular Ca2+ levels), or glycine availability as a coagonist (evaluated in the presence and absence of exogenous glycine) were observed between astrocyte-rich and astrocyte-poor cultures, suggesting that glia do not directly modulate NR composition or function. Nordihydroguaiaretic acid, a lipoxygenase inhibitor, blocked NMDA-mediated toxicity in astrocyte-poor cultures, raising the possibility that glia effectively reduce the accumulation of highly diffusible and toxic arachidonic acid metabolites in neurons. Alternatively, glia may alter neuronal development/phenotype in a manner that selectively reduces susceptibility to NR-mediated toxicity.  相似文献   

18.
Membrane depolarization accompanying calcium (Ca2+) influx into neurons is thought to play an essential role in controlling the survival and death of cultured mouse cerebellar granule cells (CGCs). In this study, we sequentially controlled the survival and death of CGCs in culture and monitored the expression of several kinds of genes including brain-derived neurotrophic factor (BDNF) gene. Deprivation and subsequent induction of membrane depolarization by lowering and re-elevating the extracellular concentration of potassium chloride, respectively, led to death of CGCs and then to an attenuation of the death process depending upon the Ca2+ influx into CGCs through voltage-dependent calcium channels (VDCCs). De novo protein synthesis was critical for attenuating the death of non-depolarized CGCs. Accompanying this attenuation was an activation of c-fos and BDNF genes and an inactivation of c-jun and neurotrophin-3 (NT-3) genes. The attenuation of cell death mediated by exogenous BDNF was only partial compared to that by membrane depolarization, suggesting that not only BDNF but also other factors could be involved in the membrane depolarization-mediated attenuation of death of CGCs. In good agreement with this observation, the mode of activation of c-fos, c-jun, BDNF and NT-3 genes induced by exogenous BDNF was different from that induced by membrane depolarization. Thus, membrane depolarization effectively attenuates the death of non-depolarized CGCs, the mode of which seems to be different from that mediated by BDNF alone.  相似文献   

19.
Cerebellar granule cells (CGC) undergo massive DNA fragmentation, an apoptotic marker, in 8-day-old rat cerebellum. In vitro, they survive in the presence of depolarizing concentrations of KCl. Bisindolylmaleimide, a specific PKC inhibitor, blocks CGC apoptosis in vitro. Here I show that PKC delta, which has been involved in apoptosis in different cell lines, is constitutively cleaved in CGC, suggesting that its catalytic subunit is active per se. Moreover, KCl deprivation induces cyclin D1 expression and accumulation in nuclei. This process is blocked by bisindolylmaleimide. A model is proposed where, in the absence of survival signals, activated PKC delta induces cyclin D1 expression and accumulation in the nucleus, which subsequently, would lead to an aborted cell cycle and apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号