首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic structures of ferromagnetic-film-coated carbon nanotube (CNT) probes and conventional pyramidal probes for a magnetic force microscope (MFM) were simulated using three-dimensional micromagnetic simulation. The CNT-MFM probes with a total probe diameter less than 60?nm are almost uniformly magnetized along the longitudinal direction of the CNT, which is the ideal magnetic structure for MFM observations. On the other hand, the pyramidal probes had a vortex structure around the point tip, which suggests that they require a greater thickness of the ferromagnetic film because only part of the magnetic moment participates in the detection of the z-component of the stray field from samples. The advantages of the CNT-MFM probe are uniform magnetization along the longitudinal direction and magnetic imaging ability using a smaller coating thickness.  相似文献   

2.
We developed a micromagnetic model of magnetic force microscopy (MFM) tip to compare it with the simple point probe model. We simulated the MFM signal to provide an understanding of the measurement of the field generated by the write head in perpendicular recording hard disk drives. When the magnetic pole density at the air-bearing surface of the head's main pole is increased from 0.2 T to 1 T, the MFM tip with vertical anisotropy shows a flower-state magnetization, while the tip with horizontal anisotropy has more complicated switching modes. It is found that the signal ratio of the two MFM tips with vertical/horizontal anisotropy does have a one-to-one correspondence to the average magnetic field in the tip; however, the signal ratio may change sign because of the magnetic moments' switching in the tip with vertical anisotropy. The result of micromagnetic simulation is quite similar to that of the point probe model, and has good agreement with experiments.  相似文献   

3.
Extraordinary Hall effect probes with 160?nm × 160?nm working area were fabricated using photo-?and electron-beam lithographic procedures with the aim of direct measurements of MFM cantilever tip magnetic properties. The magnetic field sensitivity of the probes was 35?Ω?T(-1). Magnetic induction of the MFM cantilever tips coated by Co and SmCo films was measured with the probes. It was shown that the resolution of the probes was of the order of 10?nm.  相似文献   

4.
Chen IC  Chen LH  Gapin A  Jin S  Yuan L  Liou SH 《Nanotechnology》2008,19(7):075501
High coercivity iron-platinum-coated carbon nanocones (CNCs) have been fabricated for magnetic force microscopy (MFM) by direct-current plasma-enhanced chemical vapor deposition growth of nanocones on tipless cantilevers followed by sputtering and annealing of the FePt film. The FePt-coated CNC probe has many localized magnetic stray fields due to the high-aspect-ratio geometry and small radius of the tip. The MFM imaging on magnetic recording media was performed using CNC probes and compared with the imaging by FePt-coated silicon probes. An image with 20?nm lateral resolution has been demonstrated.  相似文献   

5.
The micro/nanomagnetic behavior of magnetic systems is a key issue as the size of magnetic devices is reduced to or under the micrometer range. We study the magnetic behavior of nanomagnets under different applied magnetic field conditions by Magnetic Force Microscopy (MFM). MFM is sensitive mainly to magnetization distributions that generate magnetic fields. CoCr Magnets were deposited by electropulsed SPM onto a Si substrate with sizes ranging from 400×100 to 800×400 nm and thickness between 2 and 3 nm. MFM measurements were performed using a Digital Instruments (DI) Dimension 3100 SPM upgraded for measurements with an external magnetic field applied to the sample. The home-designed modification consists in an electromagnet with field guides towards the scanning region while measuring. Different magnetic fields up to 400 Oe were applied to the samples in-plane during the MFM measurements. The magnetic configuration for the different applied fields was then imaged by MFM.  相似文献   

6.
The future of consumer electronics depends on the capability to reliably fabricate nanostructures with given physical properties. Therefore, techniques to characterize materials and devices with nanoscale resolution are crucial. Among these is magnetic force microscopy (MFM), which transduces the magnetic force between the sample and a magnetic oscillating probe into a phase shift, enabling the locally resolved study of magnetic field patterns down to 10 nm. Here, the progress done toward making quantitative MFM a common tool in nanocharacterization laboratories is shown. The reliability and ease of use of the calibration method based on a magnetic reference sample, with a calculable stray field, and a deconvolution algorithm is demonstrated. This is achieved by comparing two calibration approaches combined with numerical modeling as a quantitative link: measuring the probe's effect on the voltage signal when scanning above a nanosized graphene Hall sensor, and recording the MFM phase shift signal when the probe scans across magnetic fields produced by metallic microcoils. Furthermore, in the case of the deconvolution algorithm, it is shown how it can be applied using the open‐source software package Gwyddion. The estimated magnetic dipole approximation for the most common probes currently in the market is also reported.  相似文献   

7.
The resolving power of various magnetic probes, which depends on the probe shape and the amount of deposited magnetic material, has been determined by means of computer modeling. The minimum thickness of a cobalt film is experimentally determined, which must be applied to the surface of a filament crystal tip on a nonmagnetic cantilever in order to obtain a magnetic image. It is shown that the point probes with filament crystal tips coated by a thin magnetic film (obtained using a relatively simple preparation method) can provide a spatial resolution comparable with that achieved using cantilevers with magnetic nanoparticles, which require a significantly more complicated preparation procedures.  相似文献   

8.
We report the results of simulations of magnetic force microscope (MFM) contrast for low-coercive ferromagnetic and superparamagnetic nanoparticles. We show that two types of MFM contrast in the form of gaussian and ring distributions can be observed because of probe-particle interaction. We discuss stabilization of the magnetic moment of nanoparticles by an external magnetic field. We have calculated the values of stabilizing magnetic fields and their dependence on probe parameters and scanning heights.  相似文献   

9.
The use of magnetic force microscopy (MFM) to detect probe-sample interactions from superparamagnetic nanoparticles in vitro in ambient atmospheric conditions is reported here. By using both magnetic and nonmagnetic probes in dynamic lift-mode imaging and by controlling the direction and magnitude of the external magnetic field applied to the samples, it is possible to detect and identify the presence of superparamagnetic nanoparticles. The experimental results shown here are in agreement with the estimated sensitivity of the MFM technique. The potential and challenges for localizing nanoscale magnetic domains in biological samples is discussed.  相似文献   

10.
扫描近场光学显微镜的光纤探针   总被引:1,自引:0,他引:1  
刘秀梅  王佳 《光电工程》1999,26(2):25-29,34
扫描近场光学显微镜(SNOM)打破了传统光学显微镜的衍射极限分辨率,自80年代中期出现以来在10多年的时间内获得了迅速的发展,并在很多的领域有很广阔的应用前景。扫描探针的形状及针尖的大小是影响SNOM分辨率的关键因素之一。  相似文献   

11.
The quantitative measurement of the magnetization of individual magnetic nanoparticles (MNPs) using magnetic force microscopy (MFM) is described. Quantitative measurement is realized by calibration of the MFM signal using an MNP reference sample with traceably determined magnetization. A resolution of the magnetic moment of the order of 10(-18) A m(2) under ambient conditions is demonstrated, which is presently limited by the tip's magnetic moment and the noise level of the instrument. The calibration scheme can be applied to practically any magnetic force microscope and tip, thus allowing a wide range of future applications, for example in nanomagnetism and biotechnology.  相似文献   

12.
Magnetic images of high density vertically recorded media using metal-coated carbon nanotube tips exhibit a doubling of the spatial frequency under some conditions (Deng et al 2004 Appl. Phys. Lett. 85 6263). Here we demonstrate that this spatial frequency doubling is due to the switching of the moment direction of the nanotube tip. This results in a signal which is proportional to the absolute value of the signal normally observed in MFM. Our modeling indicates that a significant fraction of the tip volume is involved in the observed switching, and that it should be possible to image high bit densities with nanotube magnetic force sensors.  相似文献   

13.
High resolution magnetic force microscopy (MFM) has been carried out on L1(0)-FePt dot arrays patterned by plasma modified nanosphere lithography. An ex situ tip magnetization reversal experiment is carried out to determine the magnetic domains and verify the imaging stability of MFM and the mutual perturbations between the magnetic tip and the sample. We have identified that the critical size for the single domain region is about 90?nm across. Comparison with MFM image simulation also suggests that the magnetizations of the triangular dots in both single and double domain states are parallel to one edge of the dots, indicating the large uniaxial magnetocrystalline anisotropy of the L1(0)-FePt phase and the need for decreasing the magnetostatic energy.  相似文献   

14.
双探针对顶测量可以有效地消除传统原子力显微镜(AFM)的探针形状对关键尺寸(CD)测量的影响。测量前需要将两个探针针尖(A和B)接触到一起作为测量零点,为实现双探针纳米级对准,提出一种渐进式平面扫描方法。首先,通过视觉图像引导两个探针对准到1μm以内。然后,两个探针继续接近,同时探针A在YOZ平面内对探针B扫描成像,并逐步缩小扫描范围和扫描步进,得到其针尖的纳米级坐标(YB,ZB)。最后,将探针A在Y和Z方向分别移动至YB和ZB,在X方向继续接近探针B直至两探针接触。实验证明,该方法可有效地实现双探针对准,且对准精度为10 nm。  相似文献   

15.
Following the demand of the magnetic data storage industry, the magnetic structures in hard disk heads are continuously shrinking. This requires a powerful tool to investigate the magnetic properties of these elements in the range of about 10 nm. To achieve this goal, we prepared MFM tips using the electron-beam deposition (EBD) contamination technique, where carbon caps and needles are grown onto the micromachined Si cantilevers. For batch production of MFM tips, however, this technique is not suited well, so we employ the focussed ion-beam (FIB) technique to produce MFM tips with a high aspect ratio similar to those tips with carbon needles. We show that the use of these tips not only improves the lateral resolution, but also considerably reduces the disturbation effects of the weak magnetic structures due to the magnetic tips.  相似文献   

16.
Single-wall carbon nanotube (SWNT) nanofibrils were assembled onto a variety of conductive scanning probes including atomic force microscope (AFM) tips and scanning tunnelling microscope (STM) needles using positive dielectrophoresis (DEP). The magnitude of the applied electric field was varied in the range of 1-20?V to investigate its effect on the dimensions of the assembled SWNT nanofibrils. Both length and diameter grew asymptotically as voltage increased from 5 to 18?V. Below 4?V, stable attachment of SWNT nanofibrils could not be achieved due to the relatively weak DEP force versus Brownian motion. At voltages of 20?V and higher, low quality nanofibrils resulted from incorporating large amounts of impurities. For intermediate voltages, optimal nanofibrils were achieved, though pivotal to this assembly is the wetting behaviour upon tip immersion in the SWNT suspension drop. This process was monitored in situ to correlate wetting angle and probe geometry (cone angles and tip height), revealing that probes with narrow cone angles and long shanks are optimal. It is proposed that this results from less wetting of the probe apex, and therefore reduces capillary forces and especially force transients during the nanofibril drawing process. Relatively rigid probes (force constant ≥2?N?m(-1)) exhibited no perceivable cantilever bending upon wetting and de-wetting, resulting in the most stable process control.  相似文献   

17.
A technique of numerical treatment of magnetic force microscopy (MFM) data matrices has been exploited to enhance the quality of raw MFM images of patterned Co thin films obtained by Electron Beam Lithography on RF sputtered 30-nm-thick Co samples. The pattern consists of chains of elliptical cylinders whose major axis is around 2.5 $mu$ m and whose minor axis is around 0.5 $mu$m (aspect ratio 5:1). In this work, a new differential approach is proposed. Two or more MFM images of the same surface area of a soft ferromagnetic material submitted to different magnetic fields $H$ are examined, and the different arrangements of the local magnetization, as emerging from contrast differences in MFM images, are analyzed as functions of $H$. It is shown that this differential approach is able to account for the effect of the MFM tip on the magnetization of the investigated soft magnetic material. The patterned Co samples used to demonstrate this method have been demagnetized before each MFM scan in the plane of the film by applying an alternate field of progressively small absolute value.   相似文献   

18.
Colloidal Co particles of 11 nm diameter were deposited on Si substrate by spin coating and/or casting in magnetic field. A perpendicular magnetic field varying along the diagonal of the substrate was also applied. The samples were analyzed by transmission electron microscopy (TEM), field emission gun scanning electron microscopy (SEM-FEG), atomic and magnetic force microscopy (AFM/MFM). TEM micrographs show local order when a Co nanoparticle monolayer is deposited on Si. Drying the colloidal solution in a magnetic field leads to the formation of quite large clusters (0.3 μm) of Co nanoparticles. A stripe structure was then observed when the particles were deposited by casting in the varying magnetic field. AFM/MFM measurements show isolated Co clusters on the stripes. Magnetic features corresponding to the single Co cluster have been observed pointing out that all magnetic moments in the cluster are oriented along the field direction.  相似文献   

19.
The field ion microscope (FIM) can be used to characterize the atomic configuration of the apices of sharp tips. These tips are well suited for scanning probe microscope (SPM) use since they predetermine the SPM resolution and the electronic structure for spectroscopy. A protocol is proposed for preserving the atomic structure of the tip apex from etching due to gas impurities during the period of transfer from the FIM to the SPM, and estimations are made regarding the time limitations of such an experiment due to contamination with ultra-high vacuum rest gases. While avoiding any current setpoint overshoot to preserve the tip integrity, we present results from approaches of atomically defined tungsten tips to the tunneling regime with Au(111), HOPG (highly oriented pyrolytic graphite) and Si(111) surfaces at room temperature. We conclude from these experiments that adatom mobility and physisorbed gas on the sample surface limit the choice of surfaces for which the tip integrity is preserved in tunneling experiments at room temperature. The atomic structure of FIM tip apices is unchanged only after tunneling to the highly reactive Si(111) surface.  相似文献   

20.
A scanning tunneling microscope (STM) for surface magnetic force measurements on thin-film longitudinal magnetic storage media is described. The usual rigid PtIr tip of the STM was replaced by a flexible Fe-film tip and the tip position was stabilized near the surface of the sample using the STM feedback system as tunneling occurs between the tip and sample surface. Images of a CoCrTa thin-film hard disk showing 5 μm×3 μm bit tracks written by the ferrite head of a computer disk drive are presented. The images shown are comparable to images of the bit tracks on textured surfaces using either ferrofluid decoration or other magnetic force microscopy (MFM) imaging techniques. The sensitivity of the Fe-film tip was such that the influence on the image due to magnetic forces was larger than the influence due to sample surface topography  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号