首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
An experimental study on the constraint effect of fracture resistance curve (JR curve) caused by specimen size variation was carried out with base metal of SA515 Gr. 60 carbon steel and SA516 Gr. 70 carbon steel and SA240 TP304 stainless steel and weld metal of SA516 Gr. 70 carbon steel and SA312 TP347 stainless steels. The resulting JR curve increased with increasing plane size and decreased with increasing crack length. The test results show that the effects of plane size and crack length were significant, however, the effects of specimen thickness and size were trivial.  相似文献   

2.
The different toughness tests performed on two pressure vessel steels with very different upper shelves served to make a number of observations concerning the shifts in the transition temperature due to the effect of irradiation, as well as changes in toughness with temperature in the ductile region.With respect to shifts in the transition temperature, the following was observed: the shift obtained with precracked charpy test specimens was narrower than with the others; the shift obtained with charpy V impact tests was substantially equal to that obtained with CT test specimens — wider in the case of steel A, but slightly narrower in that of steel H.With respect to toughness values in the ductile region: the toughness values obtained using precracked charpy test specimens are significantly higher than those obtained with CT test specimens for static tests; 25and 12.5 mm thick CT test specimens display comparable variations in J1C and dJ/da, but with wide scattering; the effect of irradiation, if any, is of the same order of magnitude as the scattering of the results — however, a test temperature effect is observed; the variation in toughness with temperature is determined more easily by considering a J value corresponding to a stable crack propagation of 1 mm, so that ; this variation of JΔal with temperature is substantially the same for both steels, or about −30% at 70 or 80°C, and −50% at 290°C.  相似文献   

3.
The leak-before-break (LBB) design of the piping system for nuclear power plants has been based on the premise that the leakage due to the through-wall crack can be detected by using leak detection systems before a catastrophic break. The piping materials are required to have excellent JR fracture characteristics. However, where ferritic steels for reactor coolant piping systems operate at the temperatures where dynamic strain aging (DSA) could occur, the fracture resistance could be reduced with the influence of DSA under dynamic loading. Therefore, in order to apply the LBB design concept to the piping system under seismic loading, both static and dynamic JR characteristics must be evaluated.Materials used in this study are SA516 Gr.70 for the elbow pipe and SA508 Cl.1a for the main pipe and their welding joints. The crack extension during the dynamic and the static JR tests was measured by the direct current potential drop (DCPD) and the compliance method, respectively. This paper describes the influences of the dynamic strain aging on the JR fracture characteristics with the loading rate of the pipe materials and their welding joints.  相似文献   

4.
J-integral fracture toughness tests were performed on welded 304 stainless steel 2-inch plate and 4-inch diameter pipe. The 2-inch plate was welded using a hot-wire automatic gas tungsten arc process. This weldment was machined into 1T and 2T compact specimens for single specimen unloading compliance J-integral tests. The specimens were cut to measure the fracure toughness of the base metal, weld metal and the heat affected zone (HAZ). The tests were performed at 550°F, 300°F and room temperature. The results of the J-integral tests indicate that the JIc of the base plate ranged from 4400 to 6100 in lbs/in2 at 550°F. The JIc values for the tests performed at 300°F and room temperature were beyond the measurement capacity of the specimens and appear to indicate that JIc was greater than 8000 in lb/in2. The J-integral tests performed on the weld metal specimens indicate that the JIc values ranged from 930 to 2150 in lbs/in2 at 550°F. The JIc values of the weld metal specimens tested at 300°F and room temperature were 2300 and 3000 in lbs/in2 respectively. One HAZ specimen was tested at 550°F and found to have a JIc value of 2980 in lbs/in2 which indicates that the HAZ is an average of the base metal and weld metal thoughness. These test results indicate that there is a significant reduction in the initiation fracture toughness as a result of welding.The second phase of this task dealt with the fracture toughness testing of 4-inch diameter 304 stainless steel pipes containing a gas tungsten arc weld. The pipes were tested at 550°F in four point bending. Three tests were performed, two with a through wall flaw growing circumferentially and the third pipe had a part through radial flaw in combination with the circumferential flaw. These tests were performed using unloading compliance and d.c. potential drop crack length estimate methods. The results of these test indicate that the presence of a complex crack (radial and circumferential) reduces in the initiation toughness and the tearing modulus of the pipe material compared to a pipe with only a circumferentially growing crack.  相似文献   

5.
The correlation between Charpy upper shelf energy and crack resistance was investigated by means of instrumented impact tests (ISO-V specimens) and fracture mechanics tests (CT specimens) using four different steels. The strict definition of the Rice J-integral was not applied to the ISO-V specimens. Defining J as the first derivative of deformation energy, it was possible to obtain crack resistance curves of ISO-V specimens and CT specimens. This correlation has been obtained in steels of yield strength between 365 and 480 N/mm2 and is independent of the material. The mechanical basis of this relation can be understood in terms of the criterion for ductile fracture. 60 to 80% of the upper shelf energy is consumed by stable crack growth according to these experiments. The upper shelf energy is useful as a screening test for crack resistance curves. More definite crack resistance values can be estimated from instrumented impact test carried out in dependence on temperature. It seems to be possible to estimate the required upper shelf energy to be specified in regulations with respect to ductile failure safety on the basis of materials mechanics.  相似文献   

6.
Ontario Hydro has developed a leak-before-break (LBB) methodology for application to large diameter piping (21, 22 and 24 inch) Schedule 100 SA106B heat transport (HT) piping as a design alternative to pipe whip restraints and in recognition of the questionable benefits of providing such devices. Ontario Hydro's LBB approach uses elastic-plastic fracture mechanics (EPFM).In order to assess the stability of HT piping in the presence of hypothetical flaws, the value of the material J-integral associated with crack extension (JR curve) must be known. In a material test program J-resistance curves were determined from various pipe heats and four different welding procedures that were developed by Ontario Hydro for nuclear Class 1 piping. The test program was designed to investigate and quantify the effect of various factors such as test temperature, crack plane orientation and welding effects which have an influence on fracture properties. An acceptable lower bound J-resistance curve for the piping steels and welds were obtained by machining maximum thickness specimens from the pipes and weldments and by testing side-grooved compact tension specimens. This paper addresses the effect of test temperature and post-weld heat treatment on the J-resistance curves from the welds.The fracture toughness of all the welds at 250°C was lower than that at 20°C. Welds that were post-weld heat treated showed high crack initiation toughness, Jlc, rising J-resistance curves and stable and ductible crack extension. Non post-weld heat treated welds, while remaining tough and ductile, showed comparatively lower JIc, and J-resistance curves at 250°C. This drop in toughness is possibly due to a dynamic strain aging mechanism evidenced by serrated load-displacement curves. The fracture toughness of non post-weld heat treated welds increased significantly after a comparable post-weld heat treatment.The test procedure was validated by comparing three test results against independent tests conducted by Materials Engineering Associates (MEA) of Lanham, Maryland. The JIc and J-resistance curves obtained by Ontario Hydro and MEA were comparable.  相似文献   

7.
Dynamic strain aging can appear at low alloyed ferritic steels and their welded joints. It influences the strength as well as toughness of the steels. It causes a relative maximum of impact energy at temperatures around 300°C. It also causes a distinct dependence of the strain rate on the shape of crack resistance curves. A lower slope of JR-curves is to be found at higher deformation rates. The technical initiation JIc has a relative minimum in the range between 200 and 300°C.  相似文献   

8.
The paper develops methodology and procedure for determining the allowable minimum upper shelf toughness for continued safe operation of nuclear reactor pressure vessels. Elastic-plastic fracture mechanics analysis method based on the J-integral tearing modulus (J/T) approach is used. Closed from expressions for the applied J and tearing modulus are presented for finite length, part-throughwall axial flaw with aspect ratio of . Solutions are then presented for Section III, Appendix G flaw. A simple flaw evaluation procedure that can be applied quickly by utility engineers is presented. An attractive feature of the simple procedure is that tearing modulus calculations are not required by the user, and a solution for the slope of the applied J/T line is provided. Results for the allowable minimum upper shelf toughness are presented for a range of reactor pressure vessel thickness and heatup/cooldown rates.  相似文献   

9.
This paper presents results of investigations on the influence of loading rate on yielding and fracture behaviour of ferritic steels. The range of loading rates was below a certain level at which a special stress wave analysis is required. Concerning the yielding behaviour it was found, that the yield strength can be predicted by the model of thermally activated flow. The strain hardening dσ/dε appeared to be independent of strain rate, if adiabetic heating can be neglected. Concerning the fracture behaviour it is demonstrated that the Klc-T-curves are shifted to higher temperatures with increasing loading rate. The temperature shift could be correlated with the strain rate sensitivity m = d lnσ/d lnε. The ductile/brittle transition temperature increases with incrasing loading rate. For the upper shelf region crack resistance curves as a function of loading rate are presented. It is shown that the crack length can be determined using the key-curve-method. A slightly increasing tendency of the evaluated JR-curves was found.  相似文献   

10.
A data base of JR curve trends is being established for irradiated, light-water reactor pressure vessel steels of low upper shelf toughness. R-curve trends have been developed for several welds made with Linde 80 flux and containing a high copper impurity which enhances the sensitivity to irradiation embrittlement. Tests were conducted using compact toughness specimens of 12.5 mm to 100 mm thickness. These data provide the materials properties necessary for a tearing instability analysis of postulated accident conditions in certain commercial power reactors. Irradiation decreased the level of the R curve significantly in most cases. Furthermore, the average value of tearing modulus (Tavg) was a more discriminating indicator of toughness degradation than the crack initiation toughness (JIc). Temperature-dependent correlations between the R-curve parameters (JIc, Tavg) and Charpy-V (Cv) upper shelf energy have been suggested here and in other programs. This finding could enhance the significance of Cv reactor surveillance data with respect to structural integrity. However, JIc and Tavg have demonstrated an inverse relationship with temperature which is not reflected in Cv upper shelf energy and this must be taken into account in the development of correlations.  相似文献   

11.
Within the German Research Programme “Integrity of Components” the first two capsules were irradiated in the Testing Nuclear Power Reactor VAK. The materials are of the 22 NiMoCr 3 7 and 20 MnMoNi 5 5 types and represent the lower bound of the base material regarding upper shelf energy and chemical composition (Cu, S, P), as well as a state of material which does not meet both chemical and toughness requirements (low upper shelf test melt). Tensile, Charpy, drop-weight, and fracture mechanics specimens were irradiated up to a range of 1.5 to 2 × 1019 cm−2 (E > 1 MeV). Despite the materials being at or beyond the specification limits, the results show irradiation sensitivity which can be predicted from the US Reg. Guide Trend Curves (1.99) and KWU Trend Curves in a conservative manner. The procedure to determine the adjusted reference temperature RTNDT (adj.) on the basis of ΔT41J (following ASTM E 185) could also be confirmed as conservative by comparing the different criteria derived from Charpy and drop weight tests in the unirradiated and irradiated condition.The results of fracture mechanics testing in the linear elastic range show a remarkable temperature margin to the KIc-curve of ASME XI.Prestrained compact tension specimens CT 40 mm made of 22 NiMoCr 3 7 material with an upper shelf energy of approx. 100 J were wedge loaded in a range up to 30 MPa m and exposed to the water environment during radiation. Macroscopic examination gave no indications of stress corrosion cracking.From tests of these specimens in the linear elastic range, a fracture toughness KIc*, which was not affected by the prestrain and environment history, was found depending only on the overload applied during the prestraining procedure.  相似文献   

12.
Small punch test (SPT) is a miniature sample test technique which can evaluate in-service material properties with an almost non-destructive method. In this paper, the 2.25Cr1Mo steel samples serviced for 10 years in hydrogenation reactor (with temper embrittlement), 1.25Cr0.5Mo supper-pressure vapor pipe serviced for 14 years at 520 °C and several other low alloy steels have been studied by JIC fracture toughness and SPT. The linear relationship between the small punch (SP) equivalent fracture strain and the fracture toughness of JIC was created. The correlations applied to the experimental data indicated advantages of using SPT for the determining fracture toughness of in-serviced low alloy steels. Additionally, size affects the fracture pattern. Small punch samples of small size show dimple fractures whereas large fracture toughness samples show quasi-cleavage fractures.  相似文献   

13.
Fracture toughness tests were performed in the transition region for ASTM A508 Class 3 steel using about 160 specimens. The KJ-values which are converted from Jc of the smaller specimens indicated a wide scatter ranging from below the KIc-value to much higher toughness. The fast brittle fracture behavior in the transition regime can be divided into two regions: (1) the region where fracture occurs on a blunting line (Region I) and (2) the region where fracture occurs on an R-curve (Region II). The scatter of the KJ-values in each region is caused by the amount of crack extension contained in the specimens. The methods to obtain the fracture toughness equivalent to the KIc from the KJ values were also presented.In the upper shelf region, the ductile fracture behavior of A508 Class 3 base metal and weldments was investigated. The 25% side grooved specimen was recommended for measuring the resistance against ductile crack growth. The weld heat affected zone (HAZ) has comparatively higher tearing modulus, whereas the weld metal shows the lowest one.  相似文献   

14.
This investigation is concerned with the influence of temperature and loading rate on elastic-plastic fracture in the range of ductile cleavage transition. Side-grooved three point bend specimens of a width of 200 mm and a thickness of 100 mm of two steels of the type 22 NiCrMo 37 of different toughness have been loaded with two deflection rates differing by a factor of 105 in the range between initiation and upper shelf temperature. Due to dynamical loading the transition temperature of these steels has been increased by about 30 K. The slope of the crack resistance curve of the steel of lower toughness was increased considerable due to dynamical loading whereas the slope of the crack resistance curve of the steel of high toughness was increased only negligible. The results suggest that a conservative assessment of dynamically loaded components may be based on quasi-static crack resistance curves. However, in the case of dynamical loading stable crack growth can be supposed only at temperatures being considerable higher than for quasi-static loading.  相似文献   

15.
The effect of thermal aging on mechanical properties and fracture toughness was investigated on pressure vessel steel of light water reactors. Submerged are welded plates of ASME SA508 C1.3 steel were isothermally aged at 350°C, 400°C and 450°C for up to 10,000 hrs. Tensile, Charpy impact and fracture toughness testings were conducted on the base metal and the weld heat affected zone (HAZ) material to evaluate whether thermal aging induced by the plant operation is critical for the integrity of the pressure vessel or not. Tensile properties of the base metal was not changed by thermal aging as far as the thermal aging conditions were concerned. Relatively distinct degradation was observed in fracture toughness JIC and J-resistance properties of both the base metal and the weld HAZ material, while only slight changes were observed in Charpy impact properties for both of them. However, it was concluded that the effect of thermal aging estimated by 40–80 years of plant operation on fracture toughness of both materials is small.  相似文献   

16.
Eight flawed 990-mm-OD, 152-mm-thick vessels of ASTM A508 class 2 forging steel or A533, grade B, class 1 steel plate have been pressurized hydraulically to burst or rupture. The rupture test of one vessel (V-7) was repeated pneumatically to study the effects of the sustained load thus attainable. Test temperatures ranged from 0 to 91°C so that transitional to upper shelf fracture toughness behavior was observed. Pretest predictions of failure pressure were based on tensile and toughness properties determined from Charpy-size to 102-mm-thick specimens representative of the test vessels. Linear elastic fracture mechanics based on strain and plastic instability analyses were generally adequate for determining the failure pressure, which ranged from 2.15 to 3.28 times design pressure.  相似文献   

17.
The use of fracture mechanics in the fracture-safe design and continued safe operation of nuclear reactor pressure vessels has provided an incentive for the development of small specimens for obtaining pertinent fracture toughness data. Small specimens are required for economic reasons when a large number of heats are involved and for space limitation reasons such as in surveillance programs. Several approaches to obtaining fracture toughness from small specimens by either direct measurements or indirect correlations and calculations are reviewed, and their merits and limitations are discussed. Emphasis is placed on techniques which have been developed to determine static and dynamic fracture toughness from surveillance-type specimens. Recently developed techniques for obtaining J-initiation values from a single test specimen and methods for estimating lower and upper shelf fracture toughness from tensile properties are also presented.  相似文献   

18.
The Japan Atomic Energy Research Institute (JAERI) has carried out a series of research and development work related to the high temperature gas-cooled reactor (HTGR) and, accordingly the high temperature engineering test reactor (HTTR) will be constructed in the near future. As the reactor pressure vessel (RPV) material, Mo steel will be used. Material characterization tests have been carried out to evaluate the applicability of the Mo steel for the RPV and to prepare for the licensing. The present paper summarizes the fracture toughness behavior including KId and KIa, irradiation embrittlement susceptibility and degradation of steel due to the long term aging at high temperature of the forged low Mo steel. These tests reveal good fracture toughness which well meets the requirements of the ASME Code, low neutron irradiation embrittlement susceptibility, little embrittlement by long term aging and so on. The present test results demonstrate good applicability of forged low Mo steel to the RPV of HTGR.  相似文献   

19.
Electricité de France has conducted during these last years an experimental and numerical research programme in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels integrity assessment, regarding the risk of brittle fracture. Two cladded specimens made of ferritic steel A508 Cl3 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature to obtain cleavage failure. The crack instability was obtained in base metal by cleavage fracture, without crack arrest. The tests have been interpreted by local approach to cleavage fracture (Beremin model) using three-dimensional finite element computations. After the elastic–plastic computation of stress intensity factor KJ along the crack front, the probability of cleavage failure of each specimen is evaluated using m, σu Beremin model parameters identified on the same material. The failure of two specimens is conservatively predicted by both analyses. The elastic–plastic stress intensity factor KJ in base metal is always greater than base metal fracture toughness K1c. The calculated probabilities of cleavage failure are in agreement with experimental results. The sensitivity of Beremin model to numerical aspects is finally exposed.  相似文献   

20.
Development continues on the technology used to assess the safety of irradiation embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack-tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil-ductility temperature (NDT) performs better than the reference temperature for nil-ductility transition (RTNDT) as a normalizing parameter for shallow flaw fracture toughness data, (3) biaxial loading can reduce the shallow flaw fracture toughness, (4) stress based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow flaw fracture toughness because in-plane stresses at the crack-tip are not influenced by biaxial loading, and (5) an implicit strain based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation induced shift in Charpy V-notch vs. temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号