首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
针对航空涡轮叶片的温度场预测问题,采用CFD(computational fluid dynamics)软件和有限元计算理论与方法,以对流冷却叶片的温度场与热应力求解为例,分别计算了涡轮进口温度均匀和不均匀时叶片的温度场和热应力,分析了涡轮进口温度不均匀对叶片热应力的影响,其中叶片温度场的求解采用气热耦合的方法即直接应用CFD软件计算叶片温度场,再依据温度场进行了有限元热应力分析.结果表明,进口温度不均匀时比进口温度均匀时叶片的热应力增大10%左右.  相似文献   

2.
描述了汽轮机转子热应力在线监测系统的一般数学模型。针对二维差分法,对汽轮机转子的某一轴段进行了热应力求解计算。通过与有限元计算结果的对比,深入分析了造成热应力计算结果误差的原因,进而对截面体积平均温度公式进行修正,采用节点平均温度计算体积平均温度,从而使得计算结果在精度上与有限元结果更好地吻合。同时该算法的实时性好,为汽轮机转子热应力在线监测系统的实现提供了理论依据。  相似文献   

3.
核电汽轮机高压缸三维有限元热应力分析   总被引:1,自引:0,他引:1  
在变工况时,核电汽轮机的汽缸表面温度随蒸汽温度快速变化,引起汽缸内部大的温差与热应力;在稳态条件下,汽缸大压差截面处也存在大的温差与热应力。文中着重介绍核电汽轮机高压缸的热应力计算和分析,考虑了中分面的密封分析,计算了冷态起动,加负荷、稳态和甩负荷过程中的瞬态非线性温度场,然后以材料非线性模式求解相应的热应力场。  相似文献   

4.
采用结构分析有限元方法,对某型汽轮机阀壳冷态启动工况下的温度场、热应力场及综合应力场进行了分析计算,得出了关键点处详细的温度场及其对应的热应力场的变化规律,并估算了关键点处阀壳疲劳寿命.分析过程中采用CFD软件对阀壳内部流质速度场进行了仿真模拟.  相似文献   

5.
高晶波 《汽轮机技术》2002,44(3):146-148,151
现在对汽轮机热应力的实时计算方法均是采用解析方法,由于解析方法是对转子轴对称二维热传导方程的简化,给热应力的计算带来了误差,应用有限元的中间计算结果,应用Hopfield神经网络的方法,实现有限元计算中热应力整体刚度矩阵代数方程组的快速求解,仿真结果表明,该方法是有效的。  相似文献   

6.
本文记录了先进的计算流体动力学(简称CFD)技术在高效率汽轮机设计中的应用,计算方法是通过强词经典的型线设计和一般的汽轮机设计方面,如整个通道的应力分析及几何特性的相互关系来描述的。该方法用于典型的汽轮机设计案例,即汽轮机多级全三维流场、叶片汽封和排汽缸的计算。CFD对设计过程的支持体现在:对复杂的流动特性提供更深入的物理认识,并为进一步研究和优化提供目标。通过比较计算结果和试验结果,评定了目前技术水平下CFD的预测能力。计算结果和试验结果取得很好的一致。还对由结构化网格和非结构化网格计算所得结果进行了相互比较,不仅证明了两者极好的一致性,而且示范了采用非结构网格的CFD软件模化复杂几何形状的特殊能力。总之,发现了CFD方法具备预测现代汽轮机组中发生的复杂三维粘性流动的能力,从而在整体上获得对流体动力机械更好的理解。性能进行预测,并对流场的总体动力特性有更好的了解。因此,先进的CFD技术是西门子发电集团设计高效率汽轮机的一个基本工具。  相似文献   

7.
描述了汽轮机转子热力在线监测系统的一般数学模型。以递推算法为基础,对某电厂1 000MW超超临界汽轮机转子进行了热应力求解计算。通过与有限元计算结果的对比,深入分析了影响热应力计算精度的主要因素,为汽轮机转子热应力在线监测系统的实现提供理论依据。  相似文献   

8.
大功率汽轮机叶轮轮缘传热系数的研究   总被引:1,自引:0,他引:1  
提出了大功率汽轮机叶轮轮缘总传热系数的计算方法.介绍了汽轮机动叶片叶身平均对流换热表面传热系数和叶片流道下壁面对流换热表面传热系数的计算方法和计算公式.把汽轮机叶片对叶轮的传热简化为肋片传热,使用肋片传热模型计算汽轮机叶片流道的等效传热系数,采用圆筒壁模型计算汽轮机叶轮轮缘的总传热系数,并给出了应用实例.在汽轮机转子的温度场与热应力场有限元分析中,该计算方法为确定叶轮轮缘的传热边界条件提供了依据.  相似文献   

9.
整圈阻尼叶片的有限元分析方法研究——稳态应力计算   总被引:1,自引:0,他引:1  
整圈阻尼叶片是汽轮机动叶片中较为先进的一种长叶片结构形式,其结构强度较高,但是对其进行精细化设计和分析具有一定难度。目前在应用FEA软件对汽轮机整圈自锁阻尼叶片进行结构分析时,仍然存在一些有待澄清的问题,计算结果的准确性也需要进一步的确认。本文承接上篇关于整圈阻尼长叶片频率计算的有限元方法,着重对叶片的应力分析过程中涉及的前处理以及求解过程中的参数设置进行了探讨,希望能够对叶片设计工程师的工作提供参考。  相似文献   

10.
网格的划分是对工程问题进行数值模拟的重要环节,网格质量的高低直接影响计算结果的精度.在对汽轮机叶片周围流场的数值模拟过程中,较高质量的网格是基础要求,但由于汽轮机末级叶片结构非常复杂,这就加大了其网格划分过程中的难度.为了进一步提高ICEM CFD对汽轮机叶片周围流场网格划分的质量,并针对避免产生“负体积”的问题.提出了一种可以得到高质量网格的方法,并阐述了在实际操作中应该注意的事项.  相似文献   

11.
This paper presents the thermal modelling of an unglazed solar collector (USC) flat panel, with the aim of producing a detailed yet swift thermal steady-state model. The model is analytical, one-dimensional (1D) and derived by a fin-theory approach. It represents the thermal performance of an arbitrary duct with applied boundary conditions equal to those of a flat panel collector. The derived model is meant to be used for efficient optimisation and design of USC flat panels (or similar applications), as well as detailed thermal analysis of temperature fields and heat transfer distributions/variations at steady-state conditions; without requiring a large amount of computational power and time. Detailed surface temperatures are necessary features for durability studies of the surface coating, hence the effect of coating degradation on USC and system performance. The model accuracy and proficiency has been benchmarked against a detailed three-dimensional Finite Difference Model (3D FDM) and two simpler 1D analytical models. Results from the benchmarking test show that the fin-theory model has excellent capabilities of calculating energy performances and fluid temperature profiles, as well as detailed material temperature fields and heat transfer distributions/variations (at steady-state conditions), while still being suitable for component analysis in junction to system simulations as the model is analytical. The accuracy of the model is high in comparison to the 3D FDM (the prime benchmark), as long as the fin-theory assumption prevails (no ‘or negligible’ temperature gradient in the fin perpendicularly to the fin length). Comparison with the other models also shows that when the USC duct material has a high thermal conductivity, the cross-sectional material temperature adopts an isothermal state (for the assessed USC duct geometry), which makes the 1D isothermal model valid. When the USC duct material has a low thermal conductivity, the heat transfer course of events adopts a 1D heat flow that reassembles the conditions of the 1D simple model (for the assessed USC duct geometry); 1D heat flow through the top and bottom fins/sheets as the duct wall reassembles a state of adiabatic condition.  相似文献   

12.
以NREL Phase VI风力机为研究对象,对低雷诺数下叶片三维效应翼型气动参数修正进行研究。通过三维CFD数值模拟与二维翼型风洞实验,比较和检验现有的Snel、Lindenburg、Du&Selig、Chaviaropoulos&Hansen这4种修正公式。结果显示修正效果明显不同,以Du&Selig修正公式效果最佳,但它在叶尖和叶根部位的修正误差较大,而且随着尖速比的减小,叶片上的修正值与三维CFD结果吻合的区域减小,尤其不适合负攻角流动的修正。  相似文献   

13.
为满足大型核电汽轮机高压缸的开发要求,采用耦合流动计算和共轭传热的数值方法研究了超超临界二次再热高压缸的流热耦合,给出了高压缸排汽腔室和抽汽腔室流体域的流动特性、外缸和内缸固体部件的温度场分布特性。研究结果表明:抽汽腔室进口重量流量不均匀,靠近抽汽管道的进口质量流量整体偏高;双分流波整体内缸的表面强化与排汽腔室的对流换热承受了高压缸几乎全部的温差应力,因此外缸温度场比内缸的温度场相对要更加均匀。研究结果为研发超超临界二次再热高压缸提供理论支持。  相似文献   

14.
The heat transfer characteristics and flow behavior in a rectangular passage with two opposite 45° skewed ribs for turbine rotor blade have been investigated for Reynolds numbers from 7800 to 19,000. In this blade, the spanwise coolant passage at the trailing edge region whose thickness is very thin is chosen, so the channel aspect ratio (=width/height of channel) is extremely high, 4.76. Therefore the heat transfer experiment in the high‐aspect‐ratio cooling channel was performed using thermochromic liquid crystal and thermocouples. Furthermore, the calculation of flow and heat transfer was carried out using CFD analysis code to understand the heat transfer experimental results. The enhanced heat transfer coefficients on the smooth side wall at the rib's leading end were the same level as those on the rib‐roughened walls. © 2002 Scripta Technica, Heat Trans Asian Res, 31(2): 89–104, 2002; DOI 10.1002/htj.10018  相似文献   

15.
Transcritical carbon dioxide (CO2) Rankine cycle has exhibited great potential in the field of low-temperature heat utilization. But its application is restricted by the condensing issue and the safety concern due to the relatively low critical temperature and high critical pressure of CO2. Blending CO2 with organic fluids for the transcritical Rankine cycle is regarded as an effective method to solve these problems. And the turbine performance has great influence on the performance of transcritical Rankine cycle. In this paper, the thermal design of the CO2-based mixture turbine is firstly carried out based on the parametric optimization of the system. Then the computational fluid dynamics (CFD) analysis is performed to examine the turbine performance and validate the reliability of thermal design. Furthermore, the effects of blade tip clearance and nozzle-to-rotor clearance on the turbine performance are investigated. Results show that the turbine is well designed with an isentropic efficiency of 84.54%, and the CFD simulation results basically agree with the thermal design results. The influence of leakage flow on mainstream grows significantly as the blade tip clearance increases. When the blade tip clearance is 2 mm, the relative loss of power output could achieve as large as 7.81%. Larger nozzle-to-rotor clearance leads to more uniform distributions of Mach number and pressure, but the flow losses also increase. The effect of trailing edge disturbance on the flow field at the nozzle outlet is almost negligible if the nozzle-to-rotor clearance is 6 mm or more.  相似文献   

16.
This paper presented a coupled heat transfer model combining the combustion in the furnace and the ultra-supercritical(USC) heat transfer in the water wall tubes. The thermal analysis of the spiral water wall in a 1000 MW double reheat USC boiler was conducted by the coupled heat transfer simulations. The simulation results show that there are two peak heat flux regions on each wall of spiral water wall, where the primary combustion zone and burnt-out zone locate respectively. In the full load condition, the maximal heat flux of the primary combustion zone is close to 500 kW/m~2, which is higher than that in the conventional single reheat USC boilers. The heat flux along the furnace width presents a parabolic shape that the values in the furnace center are much higher than that in the corner regions. The distribution of water wall temperature has a perfect accordance with the heat flux distribution of the parabolic shape curves, which can illustrate the distribution of water wall temperature is mainly determined by heat flux on the water wall. The maximal water wall temperature occurs at the middle width of furnace wall and approaches 530°C, which can be allowed by the metal material of water wall tube 12Cr1MoVG. In the primary combustion zone, the wall temperatures in half load are almost close to the values in 75% load condition, caused by the heat transfer deterioration of the subcritical pressure fluid under the high heat flux condition. The simulation results in this study are beneficial to the better design and operational optimization for the double reheat USC boilers.  相似文献   

17.
采用流固耦合方法对燃气轮机高温涡轮叶片旋流冷却结构进行数值模拟分析。探究了不同冷气/燃气温度比条件下旋流冷却的流动与传热特性、叶片前缘区域固体温度、热应力以及热应变分布。研究表明:在进气腔入口雷诺数固定的条件下,随着温度比升高,冷气密度降低,冷气流速逐渐提升,同时湍动能升高,靶面努塞尔数逐渐升高;当温度比较低时冷气的流速较低、单位时间冷气带走的热量较少,当温度比较高时冷气温度较高、单位质量冷气所能吸收的热量有限,靶面处热流密度先升高后降低。受靶面热流密度分布影响,随着温度比升高,叶片前缘固体的温度、热应力以及热应变先降低后升高。  相似文献   

18.
This paper describes a transient cooling technology for electronic equipments using phase-change material (PCM). The module is made of low-cost materials, yet it is designed to achieve a reasonably high level of heat transfer performance. Paraffin is used as the PCM. In previous our report, we can estimate the cooling performance of PCM by using a thermal network method, which cannot calculate melted PCM flow. In this paper, we consider the heat transfer phenomena of PCM module more deeply by using computational fluid dynamics (CFD) analysis with an enthalpy porosity method. By using this method, we can calculate phase-change phenomena and flow phenomena of melted PCM with CFD analysis. First, we briefly explain the results of the experiment and the thermal network analysis. Then we describe the details of CFD analysis with the enthalpy porosity method. In this calculation, melted PCM flow and heat absorption of latent heat can be analyzed. Therefore, we can discuss the reason why the thermal network analysis can estimate cooling performance of PCM module without dealing with melted PCM flow. The calculation results showed that natural convective flow of melted PCM affects the cooling performance of the PCM module. In the case where the PCM module is set vertically, high temperature and low temperature locations exist on the substrate. If several devices are cooled with the PCM module, device consuming the most power must be set in the lower part of the PCM module. From these results, we can conclude that no natural convective flow occurs in our experiment due to the shape of the PCM module.  相似文献   

19.
The aeroelastic response and the airloads of horizontal-axis wind turbine rotor blades were numerically investigated using a coupled CFD–CSD method. The blade aerodynamic loads were obtained from a Navier–Stokes CFD flow solver based on unstructured meshes. The blade elastic deformation was calculated using a FEM-based CSD solver which employs a nonlinear coupled flap-lag-torsion beam theory. The coupling of the CFD and CSD solvers was accomplished in a loosely coupled manner by exchanging the information between the two solvers at infrequent intervals. At first, the present coupled CFD–CSD method was applied to the NREL 5MW reference wind turbine rotor under steady axial flow conditions, and the mean rotor loads and the static blade deformation were compared with other predicted results. Then, the unsteady blade aerodynamic loads and the dynamic blade response due to rotor shaft tilt and tower interference were investigated, along with the influence of the gravitational force. It was found that due to the aeroelastic blade deformation, the blade aerodynamic loads are significantly reduced, and the unsteady dynamic load behaviors are also changed, particularly by the torsional deformation. From the observation of the tower interference, it was also found that the aerodynamic loads are abruptly reduced as the blades pass by the tower, resulting in oscillatory blade deformation and vibratory loads, particularly in the flapwise direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号