共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
粒子群优化算法是一种基于群体智能理论的全局优化算法,通过群体中粒子间的合作与竞争实现对问题空间的高效搜索。针对算法后期收敛速度较慢、易陷入局部最优的缺点,提出了一种混合粒子群算法。该算法通过改变种群初始化方法,引入交叉和变异机制等措施改善基本粒子群算法的性能。数值试验结果表明,改进型粒子群算法在提高全局寻优能力和加快收敛速度等方面均有良好的表现。 相似文献
3.
4.
提出一种新的带有混合变异算子的自适应粒子群优化算法.该算法使用了动态自适应惯性权重,粒子群中所有粒子适应度的整体变化可以跟踪粒子群的状态,在每次迭代时,算法可根据粒子的适应度变化动态改变惯性权重,从而使算法具有动态自适应性.在每次迭代过程中,对符合变异条件的粒子进行混合变异.通过对六个典型的测试函数的试验,表明该方法具有较强的全局寻优能力,克服了基本PSO易陷入早熟收敛的现象,并进一步提高了计算精度. 相似文献
5.
6.
混合变异算子的自适应粒子群优化算法 总被引:5,自引:0,他引:5
针对惯性权重线性递减粒子群算法(LDW)不能适应复杂的非线性优化搜索过程的问题,提出了一种非线性递减的惯性权重策略,使算法很快地进入局部搜索,并在算法中引入混合变异算子,克服算法易早熟收敛的缺陷。对几种典型函数的测试结果表明,本文算法的收敛速度和收敛精度都明显优于LDW算法。 相似文献
7.
针对混合储能系统容量优化的问题,以考虑风储微网中混合储能系统(Hybrid Energy Storage System, HESS)为研究对象,提出一种EMD-APSO配置模型。首先,根据蓄电池、超级电容器两种储能装置的特点建立等效电路模型;然后基于经验模态分解(Empirical Mode Decomposition, EMD)建立混合储能的容量优化配置模型,运用自适应粒子群算法(Adaptive Particle Swarm Optimization, APSO)优化求解,得出最优分界点和储能容量配置结果。研究表明,所提出的优化配置方案较好,能满足风电并网要求,且达到储能利用效率和经济效益兼顾,实现了优化效果。 相似文献
8.
基于混合策略自适应学习的并行粒子群优化算法 总被引:1,自引:0,他引:1
针对当前各种粒子群优化算法解决问题时存在的局限性,提出一种基于混合策略自适应学习的粒子群优化算法(HLPSO)。该算法从收敛速度、跳出局部极值、探索、开发几个不同角度融合了4种具有不同优势的变异策略,当面对不同形态的复杂问题时通过自适应学习机制选择出合适的策略来完成全局寻优。通过对7个标准测试函数的仿真实验并与其他算法相比较,所得结果表明了所提出的算法具有较快的收敛速度、较高的精度以及很强的跳出局部极值的能力。 相似文献
9.
提出了一种带有自适应变异的量子粒子群优化(AMQPSO)算法,利用粒子群的适应度方差和空间位置聚集度来发现粒子群陷入局部寻优时,对当前每个粒子经历过的最好位置进行自适应变异以实现全局寻优。通过对典型函数的测试以及与量子粒子群优化(QPSO)算法和自适应粒子群优化(AMPSO)算法的比较,说明AMQPSO算法增强了全局搜索的性能,优于其他算法。 相似文献
10.
黄少荣 《计算机应用与软件》2010,27(3):275-278
以最大化现金流净现值为优化目标的多模式资源约束调度问题MMRCPSP(Multi-mode Resource-Constrained Project Scheduling Problem)是一类带有复杂非线性特征的NP-hard问题,传统粒子群算法在解决该类离散问题上具有一定局限性。从粒子群算法的优化原理出发,结合遗传算法,在粒子群算法中引入交叉和变异操作,得出一种应用于MMRCPSP现金流优化的快速、易实现的混合粒子群算法,拓宽了粒子群优化算法在离散优化领域的应用。仿真实验结果验证了算法的有效性和高效性。 相似文献
11.
12.
针对粒子群优化算法易早熟收敛的缺点,提出一种自适应粒子群优化算法(ASPO),将物种的概念引入种群多样性测度中,利用种群多样性信息对惯性权重进行非线性的调整,并引入速度变异算子和位置交换算子,增强算法的全局收敛性能。将APSO算法应用于电力系统无功优化,对IEEE-30节点系统进行仿真计算,仿真结果表明,系统网损从5.988 MW降到4.889 MW,下降率为18.36%,算法的收敛精度和收敛稳定性均较当前常用方法有明显的提高。 相似文献
13.
针对粒子群优化算法容易早熟、收敛精度低等缺点,通过采用全变异策略、最大搜索速度自适应调整等策略得到了一种全变异粒子群优化算法,其中的全变异策略是在陷入早熟的条件下全体粒子参加变异,并且当把粒子看成染色体时,每一个基因等概率地参加变异,可以克服算法的早熟而继续优化,提高了算法的收敛精度。对Shubert函数进行实验的结果表明了算法的有效性。 相似文献
14.
15.
16.
17.
针对粒子群算法容易早熟收敛和后期收敛速度慢的缺点,结合进化论中小生境技术,提出了小生境粒子群优化算法。通过粒子之间的距离找到具有相似距离的粒子个体组成小生境种群,然后在该种群里面利用粒子群优化算法进化粒子,所有个体经过其小生境群体的进化之后,找到最优的个体存入到下一代的粒子群中,直到找到满意的适应值为止。最后利用Shaffer函数验证了该算法的性能,并且与其他算法进行比较,结果表明该文算法能获得比较好的解,收敛成功率高,并且代价也比较小。 相似文献
18.
求解约束优化问题的一种新方法--基于量子粒子群优化算法 总被引:2,自引:0,他引:2
在用粒子群优化(PSO)算法求解约束优化问题时,处理好约束条件是取得良好的优化效果的关键。针对群体智能和约束优化问题的特点,提出了一种在每次迭代中有选择地保留一定数量不可行解的方法——DCFI(DirectChooseFixedInfeasiblesolutions)法,并把它结合到最近提出的量子粒子群优化(QDPSO)算法中。该算法可以利用保留下来的不可行解来帮助搜索靠近边界的最优解,同时又可以避免罚因子的选择问题。数值实验显示了该算法的有效性。 相似文献