首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Intermetallics》2000,8(9-11):1101-1109
Current more or less progressed developments on the base of intermetallic phases usually aim at new materials with the highest possible strength, creep resistance and oxidation resistance at the highest possible temperature and tolerable brittleness at lower temperatures for structural applications at high temperatures. Intermetallic alloys offer advantageous possibilities for reaching these aims by appropriate combination of phases and optimisation of phase distribution. This is exemplified with respect to strength and creep resistance by recent studies on NiAl alloys with strengthening Laves phase and multiphase TiAl alloys. The beneficial effects of additional softening phases on deformability and toughness are demonstrated by the results of recent studies on Laves phase alloys with disordered Fe–Al phase, NiAl alloys with disorderd Ni–Fe phase and partially transformed martensitic NiAl alloys. Mechanisms and problems are discussed and perspectives are outlined.  相似文献   

2.
Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel high temperature alloy. The five alloys exhibit different dendritic and interdendritic morphologies. The Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys formed disordered solid solution phases with body-centered cubic structure, and exhibited high compressive strength and good plasticity. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are composed with Laves phase(Hf Mo2) and disordered solid solution phases with body-centered cubic structure. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are harder and more brittle than the other three alloys due to the existence of hard and brittle Laves phases. At high temperatures, the strength decreases to below 300 MPa for the Ti Zr Hf VNb and Ti Zr Hf Mo V alloys. Solution strengthening is the primary strengthening mechanism of the Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys, and brittle Laves phase is the main cause for the low ductility of the Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys.  相似文献   

3.
CREEPDEFORMATIONOFINTERMETALLICALLOYSGerhardSauthoff(Max-Planck-InstitutfurEisenforschungGmbH.,D-40074Dusseldorf,Germany)Abst...  相似文献   

4.
This article summarizes recent progress in research and development on nickel and iron aluminide intermetallic alloys. Ordered intermetallics possess attractive properties for structural applications at elevated temperatures in hostile environments; however, brittle failure and poor fracture resistance limit their use as engineering materials. In recent years, efforts to understand this brittle fracture behavior have identified both intrinsic and extrinsic factors governing brittle fracture. Parallel work on alloy design using physical metallurgy principles has led to the development of aluminide alloys with improved mechanical and metallurgical properties for structural use.  相似文献   

5.
High-entropy alloys have attracted broad research interests due to their unique and intriguing mechanical properties. As a category of high-entropy alloys, eutectic high-entropy alloys combine the advantages of eutectic and high-entropy alloys, with excellent mechanical properties and casting properties. Some eutectic high-entropy alloys have been developed and shown exciting properties. In this paper, based on the physical metallurgy of eutectic high-entropy alloy, medium-entropy alloy Fe_2NiCrNb_x was designed. The as-cast alloy is composed of FCC and Laves phases, Nb element promotes the formation of primary Laves phase, and the hardness of the alloy increases with the increase in Nb element. Among the four alloys, the eutectic chemical composition at eutectic point is Fe_2NiCrNb_(0.34); the alloy has a good strength and plastic balance. The ultimate comprehensive strength is 2267 MPa, and the fracture strain is 30.8%. The experiment data and analyses identified the eutectic points and the excellent mechanical behavior. Moreover, the expensive Co element was replaced by Fe element. This cheap medium-entropy alloy has promising prospect in the consideration of the cost performance ratio.  相似文献   

6.
研究了NiAl-2.5Ta-7.5Cr合金在不同的退火温度下的组织演变过程,结果表明该合金的铸态组织是由NiAl基底中包含Ta(CrNiAl)2的大晶粒Laves相和一些富含Cr的尺寸在400-500nm的小颗粒组成,其中大晶粒Laves相晶界处存在C14结构相。NiAl中Ta和Cr的浓度分别在~0.6at%和~2.5at%之间。将合金置于1000°C度下退火,有细小的棒状C15结构的Laves相在NiAl中开始弥散析出。而合金经过1200°C度退火2h后,这种颗粒的体积分数增加,同时NiAl基底中Ta的浓度减少到~0.2at%。当退火温度增加到1400°C,NiAl基底中的Laves析出相完全消失。因此,1000-1300°C温度范围内这种Laves相在NiAl基底中的析出,可归因于Ti元素在NiAl固溶后的过度饱和后发生扩散的缘故。  相似文献   

7.
通过设计FGH96粉末高温合金的高温低周疲劳试验和高温单轴拉伸试验,研究了不同应力水平下高温低周疲劳损伤对合金力学性能的影响,结合对断口形貌的观察和成分分析,分析了合金力学性能改变的微观机理。结果表明,受疲劳载荷作用期间位错运动的影响,合金的屈服强度、抗拉强度在损伤前期表现出上升的趋势;损伤后期,随着材料内部裂纹的不断增多及扩展,合金的弹性模量、抗拉强度不断退化。合金力学性能的变化与疲劳加载的应力水平表现出明显的相关性。断口显微组织分析表明,随着损伤程度的增加,合金高温拉伸断裂模式由韧性逐渐向脆性转变,高温氧化加速了断裂模式的转变。  相似文献   

8.
《Intermetallics》1999,7(8):889-899
The properties of the intermetallic NiAl–Ta–Cr alloy IP75 with strengthening Laves phase were studied as a function of alloy processing procedure: investment casting, hot extrusion of cast material, hot isostatic pressing (HIP), powder injection moulding (PIM) of pre-alloyed powder, and isothermal forging of HIPped material. Powder-metallurgically processed materials show finer microstructures and correspondingly reduced brittle-to-ductile transition temperatures (BDTT), lower yield stresses at all temperatures and lower creep resistances at high temperatures than cast materials. The lowest BDTT was obtained for isothermally forged material, whereas the highest yield stress was observed for remelted cast material. The effects of processing on the mechanical behaviour can be used for adjusting the property spectrum to specific applications. IP75, which is attractive for high-temperature applications because of high strength at temperatures above 1000 °C in combination with tolerable brittleness at room temperature as well as high corrosion and thermo-shock resistance, is the subject of an ongoing development aiming at applications in stationary gas turbines.  相似文献   

9.
Laves相金属间铬化物的制备研究进展   总被引:5,自引:0,他引:5  
拓扑密排结构的金属间化合物是潜在的高温结构材料,Laves相金属间化合物是其中最大的一类。而Laves相金属间铬化物Cr2X(X为Ti、Nb、Ta、Zr、Hf等)近年来成为高温结构材料研究中的一个热点,因为这些化合物具有较高的熔点、较低的密度和比较好的抗氧化性。有多种方法可以制备Laves相金属间铬化物。对目前Laves相铬化物的各种制备工艺技术现状及研究进展进行了综述,重点介绍了国内外制备Laves相金属间铬化物的熔铸法、定向凝固、机械合金化(MA)、机械合金化 热固相反应、机械合金化 热压法及铸锭冶金等有效技术,并评述了这些制备工艺的优缺点,指出了研究中存在的问题和今后的发展方向。  相似文献   

10.
《Intermetallics》2000,8(7):709-716
Ti–Al–Si–Nb dual phase alloys are mainly composed of α2-Ti3Al matrix and Ti5Si3 silicide phases. In this paper, two alloys (402 and 405) whose Si contents are 2 and 5 at% respectively were arc melted and hot-rolled into sheets with different amounts of deformation. The silicide phase (Ti,Nb)5(Si,Al)3 was broken up into small pieces and redistributed in the α2 matrix during the hot-rolling. Improved strength and ductility of the two alloys were observed after hot-rolling, which can be attributed to both the finely distributed reinforcement silicide phase and refinement of the matrix grain size. The mechanical properties of the two alloys are dependent on their volume fractions of the silicide phase: the strength of alloy 405 is higher than that of alloy 402, while alloy 402 is more ductile than alloy 405. The brittle–ductile transition temperature of the two dual phase alloys is between 600 and 800°C. The surface slip on the dual phase alloys was also observed. Obvious separation between the (Ti,Nb)5(Si,Al)3 particles and the α2 matrix is found on the fracture surfaces obtained at high temperature, showing dimple-like morphology.  相似文献   

11.
Ta-containing NiAl-base alloys with the Laves phase TaNiAl with C14 structure, which were studied in Part I of this study, were modified by further alloying and were studied with respect to constitution and deformation behaviour at ambient and high temperatures—including elastic deformation and creep—as a function of alloy composition and microstructure. Advantageous effects on the mechanical behaviour with reduction of brittle-to-ductile transition temperature and flow stress were found only for alloying additions of Nb, which can replace Ta completely and which was studied extensively, as well as Fe, Cr and Si. The NiAl---Ta---Cr case was selected as most promising for further alloy development and is subject of the subsequent Part III.  相似文献   

12.
CoMoCrSi alloys, mostly known as Tribaloy® family, combine well-known outstanding properties in terms of wear and corrosion resistance as well as in terms of mechanical strength. Compared to other wear resistant alloys, their performance is due to the presence of hard Laves phases rather than intermetallic carbides. Among the Tribaloy family, the T-800 alloy offers the best performance as a result of a higher amount of primary Laves phases. However, as a consequence of the brittle nature of these hard phases, the deposited alloy may present a relatively low resistance to crack initiation and propagation, particularly in laser cladding processing where thermal stresses are significant. A reduction in the volume fraction of these hard phase may be achieved by replacing some of the Laves phase components in the alloy (Co, Mo, Si) by Ni (T-900 alloy). Alternatively, it has been suggested that the addition of Fe could also lead to a significant reduction. The Fe addition can easily be accomplished in laser cladding process by dilution of the T-800 coating with the steel substrate. In this work a comparative study of microstructure, hardness and cracking susceptibility of low and high diluted T-800 and T900 coatings deposited by laser cladding is presented. A lower cracking ratio is obtained for the T-900 coatings at the cost of a lower hardness and wear resistance. No noticeable effect on the cracking susceptibility of the T-800 is found due to dilution with the substrate. However a change in its microstructure is observed giving superior hardness and wear resistance.  相似文献   

13.
In this work, a new refractory high-entropy alloy, the Co-Cr-Mo-Nb-Ti system, was proposed as a family of candidate materials for high-temperature structural applications. CoCrMoNbTi x (x values in terms of molar ratios, x = 0, 0.2, 0.4, 0.5 and 1.0) alloys were prepared by vacuum arc melting. The effects of variations in the Ti content on the phase constituents, microstructure and mechanical properties of the alloys were investigated using x-ray diffractometry, scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy and compressive testing. The results showed that the CoCrMoNbTi0.4 alloy possessed a typical cast dendritic microstructure consisting of a single body-centered cubic (BCC) solid solution. Laves phases (Cr2Nb and Co2Ti) were formed in other alloys with different Ti contents. The results were discussed in terms of the mixing enthalpy, atomic size difference, electronegativity difference and valance electron concentrations among the elements within alloys. The alloy hardness exhibited a slightly decreasing trend as the Ti content increased, resulting from the coarser microstructure and reduced amount of Laves phases. Augmented Ti content increased the compressive strength, but decreased the ductility. Particularly, for the CoCrMoNbTi0.2 alloy, the hardness, compressive strength and fracture strain were as high as 916.46 HV0.5, 1906 MPa and 5.07%, respectively. The solid solution strengthening of the BCC matrix and the formation of hard Laves phases were two main factors contributing to alloy strengthening.  相似文献   

14.
《Intermetallics》1999,7(6):627-633
Three NiAl-based alloys containing 3Nb–10Mo, 5Nb–10Mo or 13.6Nb–18Mo (at%) were directionally solidified to develop three dimensional Mo-based dendrite networks. Examination of the alloys indicated that the desired chemistry was achieved for the 3Nb–10Mo and 5Nb–10Mo versions but the composition of the highly alloyed ingot was NiAl–14.6Nb–13.2Mo. The as-grown structure for all three materials consisted of three major phases: essentially unalloyed B2 crystal structure NiAl, Laves NiAlNb phase alloyed with ∼8.5 Mo, and a bcc metallic Mo solid solution containing 27Nb–7Ni–7Al. Compressive properties were measured between 1200 to 1400 K in air under constant velocity and constant load creep conditions with strain rates ranging from ∼10−4 to ∼10−8 s−1. The flow strengths of the two alloys with 10Mo were nearly identical and much weaker than those for NiAl–14.6Nb–13.2Mo under all conditions. Comparison the properties of this latter alloy with other directionally solidified NiAl-based eutectics revealed that it was the strongest material under lower temperature/fast deformation conditions, but this advantage was lost at higher temperatures and/or slower strain rates.  相似文献   

15.
采用真空电弧熔炼制备了Ni-34Al-32V(at.%)及Ni-28.5Al-43V(at.%)成分的合金。对于真空电弧熔炼纽扣锭不同位置处微观组织及力学性能进行了研究。利用光学显微镜(OM),X射线衍射(XRD),扫描电镜(SEM) 分析了合金不同凝固位置处的相组成和组织形态, 结果表明,32V合金的凝固组织由NiAl初生枝晶及NiAl+V片层共晶组成;43V合金的凝固组织由V初生枝晶与NiAl+V片层共晶共同组成。同时对合金进行了力学性能测试,高温压缩强度与室温断裂韧性较NiAl合金均有很大提高,表明V的加入可提高NiAl合金的室温断裂韧性与高温强度。  相似文献   

16.
热爆反应合成多孔NiTi形状记忆合金的性能   总被引:5,自引:0,他引:5  
利用热爆方法来制备了多孔NiTi形状记忆合金.研究了在不同热爆温度下制备出的样品与其机械性能之间的关系.结果表明:在1 223 K下热爆反应制备的NiTi合金,具有大的孔隙度,高开孔率和基本各向同性,同时表现出较好的超弹性.对断口分析发现,断裂为脆性断裂和韧性断裂的复合.这表明改善孔洞分布和形态,可以极大地提高多孔NiTi形状记忆合金的机械性能和超弹性.  相似文献   

17.
The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions. A dendritic Ni-based solid solution phase along with (Nb, Ti)C carbide, Laves, and δ-Ni3Nb secondary phases were developed in the microstructure of the as-prepared alloy. Solution heat treatment led to the dissolution of Laves and Ni3Nb phases. In addition, dendrites were replaced with large columnar grains. Aging heat treatment resulted in the formation of grain boundary M23C6 carbide and nanometric γ″ precipitates. Hardness, yield and tensile strengths, as well as elongation of the as-prepared part, were close to those of the cast alloy and its fracture occurred in a transgranular ductile mode. Solution heat treatment improved hardness and yield strength and declined the elongation, but it did not have a considerable impact on the tensile strength. Furthermore, aging heat treatment caused the tensile properties to deteriorate and changed the fracture to a mixture of transgranular ductile and intergranular brittle mode.  相似文献   

18.
Cobalt-base Tribaloy alloys are important wear-resistant materials, especially for high-temperature applications, because of the outstanding properties of the strengthened cobalt solid solution and the hard Laves intermetallic phase that make up the alloys. The Laves intermetallic phase is so abundant (35–70 vol.%) in these alloys that its presence governs all of the material properties. Heat treatment may alter the volume fraction, the size/shape, and the distribution of the Laves phase in the microstructures as well as the phase and structure of the cobalt solid solution, thus influencing the mechanical and tribological properties of the alloys. In this work, the effects of heat treatment on two cobalt-based Tribaloy alloys, T-400 and T-200, were studied. The former is a well-known Tribaloy alloy, and the latter is a newly developed one. These two alloys were heat treated in different conditions. The phases and microstructures of the alloys before and after the heat treatments were analyzed using x-ray and scanning electron microscopy. The mechanical and tribological properties of the alloys were investigated using a nano-indentation technique and a pin-on-disc tribometer, respectively.  相似文献   

19.
A 4 kg AlCoCrFeNi_(2.2) near-eutectic high-entropy alloy ingot was prepared by vacuum medium frequency induction melting. The effects of homogenized treatment on microstructure and mechanical properties of AlCoCrFeNi_(2.2) were studied. The results showed that all the alloys consisted of the primary FCC phases and eutectic FCC/B2 phases. After homogenized treatment, lots of precipitated phases appeared in the primary phase. The hardness of the as-cast alloy was HV296. The hardness values of samples were decreased and were around HV250 after homogenized treatment. The tensile fracture strength of the as-cast alloy reached 900 MPa, while the elongation was 18%. After homogenized treatment at 900 ℃, the alloy showed the most excellent mechanical properties with the fracture strength 880 MPa and the elongation was 29%, respectively. All the alloys displayed a mixture fracture mechanism, including ductile fracture in primary FCC phases and eutectic FCC phases, and brittle quasi-cleavage fracture in eutectic B2 phases. Through a simple heat treatment method, the strength of the alloy was not reduced but the plasticity was greatly enhanced, which was more conducive to the industrial application prospects.  相似文献   

20.
刘雅晶  李玉清 《金属学报》1999,35(10):1036-1042
对低Al,高Ti,Nb(合金A)和高Al、低Ti,Nb(合金B)两种成分特征的Fe-Ni-Cr-Co-Nb-Ti-Al合金宏观和微观铸态组织的观察分析表明,合金A凝固速度较快,柱状晶区较大;两者枝晶间及铸态晶界上都分布着较多块(厚片)状富含Nb和Ti的MC和Laves相多晶体;合金B柱状晶区晶界Laves相较多;合金A晶界MC和Laves相附近析 体状γ′和η相及胞状η相;合金BKγ′的尺寸仅约为  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号