首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmission-scheduling protocols can support contention-free link-level broadcast transmissions and delay sensitive traffic in mobile, multiple-hop packet radio networks. Use of transmission-scheduling protocols, however, can be very inefficient in mobile environments due to the difficulty in adapting transmission schedules. The paper defines a new adaptive and distributed protocol that permits a terminal to adapt transmission assignments to changes in topology using information it collects from its local neighborhood only. Because global coordination among all the terminals is not required and changes to transmission assignments are distributed to nearby terminals only, the protocol can adapt quickly to changes in the network connectivity. The two key parameters that affect the ability of the protocol to adapt to changes in connectivity are the rate of connectivity changes and the number of terminals near the connectivity changes. Using simulation, we determine the ranges for these parameters for which our adaptive protocol can maintain collision-free schedules with an acceptable level of overhead. The stability of the protocol is also characterized by showing that the protocol can quickly return to a collision-free transmission schedule after a period of very rapid changes in connectivity. Our channel-access protocol does not require a contention-based random-access phase to adapt the transmission schedules, and thus its ability to adapt quickly does not deteriorate with an increase in the traffic load.  相似文献   

2.
Exploiting path diversity in the link layer in wireless ad hoc networks   总被引:1,自引:0,他引:1  
Shweta  Samir R. 《Ad hoc Networks》2008,6(5):805-825
We develop an anycast mechanism at the link layer for wireless ad hoc networks. The goal is to exploit path diversity in the link layer by choosing the best next hop to forward packets when multiple next hop choices are available. Such choices can come from a multipath routing protocol, for example. This technique can reduce transmission retries and packet drop probabilities in the face of channel fading. We develop an anycast extension of the IEEE 802.11 MAC layer based on this idea. We implement the protocol in an experimental proof-of-concept testbed using the Berkeley motes platform and S-MAC protocol stack. We also implement it in the popular ns-2 simulator and experiment with the AOMDV multipath routing protocol and Ricean fading channels. We show that anycast performs significantly better than 802.11 in terms of packet delivery, particularly when the path length or effect of fading is large. Further we experiment with anycast in networks that use multiple channels and those that use directional antennas for transmission. In these networks, deafness and hidden terminal problems are the main source of packet loss. We implemented anycast as extension of 802.11 like protocols that were proposed for these special networks. We are able to show that anycast is capable of enhancing the performance of these protocols by simply making use of the path diversity whenever it is available.  相似文献   

3.
A medium access control (MAC) protocol (NULLHOC) for ad hoc networks of nodes with antenna arrays is presented. The antenna array is used for transmit and receive beamforming with the purpose of increasing spatial reuse by directing nulls at active transmitters and receivers in the neighborhood. In contrast to previous work with directional antennas, our approach is applicable to multipath channels, such as occur indoors or in other rich scattering environments. The MAC protocol is designed to support the control information exchange needed to direct nulls toward other users involved in existing communication sessions. Knowledge of the channel coefficients between a transmitter or receiver and its neighbors is used to design transmit or receive beamformer weights that implement the requisite nulling. Simulations are used to demonstrate the improvements in throughput and transmit powers that are obtained in this approach relative to the IEEE 802.11 MAC protocol. We also analyze the effects of channel estimation errors on our protocol and propose a simple modification of the basic (NULLHOC) protocol to minimize their impact. This work was supported in part by National Science Foundation grants ECS-9979408 and ANI-9980526. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the funding agencies.  相似文献   

4.
The mobile ad hoc network (MANET) has recently been recognized as an attractive network architecture for wireless communication. Reliable broadcast is an important operation in MANET (e.g., giving orders, searching routes, and notifying important signals). However, using a naive flooding to achieve reliable broadcasting may be very costly, causing a lot of contention, collision, and congestion, to which we refer as the broadcast storm problem. This paper proposes an efficient reliable broadcasting protocol by taking care of the potential broadcast storm problem that could occur in the medium-access level. Existing protocols are either unreliable, or reliable but based on a too costly approach. Our protocol differs from existing protocols by adopting a low-cost broadcast, which does not guarantee reliability, as a basic operation. The reliability is ensured by additional acknowledgement and handshaking. Simulation results do justify the efficiency of the proposed protocol.  相似文献   

5.
Fei  Qing  Jie   《Ad hoc Networks》2005,3(5):621
In ad hoc wireless networks, nodes are typically powered by batteries. Therefore saving energy has become a very important objective, and different algorithms have been proposed to achieve power efficiency during the routing process. Directional antenna has been used to further decrease transmission energy as well as to reduce interference. In this paper, we discuss five algorithms for routing tree construction that take advantage of directional antenna, i.e., Reverse-Cone-Pairwise (RCP), Simple-Linear (SL), Linear-Insertion (LI), Linear-Insertion-Pairwise (LIP), and a traditional approximation algorithm for the travelling salesman problem (TSP). Their performances are compared through a simulation study.  相似文献   

6.
Security considerations in ad hoc sensor networks   总被引:1,自引:0,他引:1  
In future smart environments, ad hoc sensor networks will play a key role in sensing, collecting, and disseminating information about environmental phenomena. As sensor networks come to be wide-spread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis has been placed on security. This paper analyzes security challenges in wireless sensor networks and summarizes key issues that need be solved for achieving security in an ad hoc network. It gives an overview of the current state of solutions on such key issues as secure routing, prevention of denial-of-service, and key management service.  相似文献   

7.
Localized broadcast incremental power protocol for wireless ad hoc networks   总被引:2,自引:0,他引:2  
We investigate broadcasting and energy preservation in ad hoc networks. One of the best known algorithm, the Broadcast Incremental Power (BIP) protocol, constructs an efficient spanning tree rooted at a given node. It offers very good results in terms of energy savings, but its computation is centralized and it is a real problem in ad hoc networks. Distributed versions have been proposed, but they require a huge transmission overhead for information exchange. Other localized protocols have been proposed, but none of them has ever reached the performances of BIP. In this paper, we propose and analyze an incremental localized version of this protocol. In our method, the packet is sent from node to node based on local BIP trees computed by each node in the broadcasting chain. Local trees are constructed within the k-hop neighborhood of nodes, based on information provided by previous nodes, so that a global broadcasting structure is incrementally built as the message is being propagated through the network. Only the source node computes an initially empty tree to initiate the process. Discussion and results are provided where we argue that k = 2 is the best compromise for efficiency. We also discuss potential conflicts that can arise from the incremental process. We finally provide experimental results showing that this new protocol obtains very good results for low densities, and is almost as efficient as BIP for higher densities.  相似文献   

8.
Secure routing in mobile wireless ad hoc networks   总被引:3,自引:0,他引:3  
We discuss several well known contemporary protocols aimed at securing routing in mobile wireless ad hoc networks. We analyze each of these protocols against requirements of ad hoc routing and in some cases identify fallibilities and make recommendations to overcome these problems so as to improve the overall efficacy of these protocols in securing ad hoc routing, without adding any significant computational or communication overhead.  相似文献   

9.
Supporting Quality of Service (QoS) in wireless networks is a challenging problem. The IEEE 802.11 LAN standard was developed primarily for elastic data applications. In order to support the transmission of real-time data, a polling-based scheme called the point coordination function (PCF) was introduced in IEEE 802.11. However, PCF was not able to meet the desired and practical service differentiation requirements to fulfill the need of real-time data. Therefore, Task Group E of the IEEE 802.11 working group released several IEEE 802.11e drafts, whose main task is to support QoS in IEEE 802.11 LANs. The polling scheme of PCF is extended in IEEE 802.11e into the more complex hybrid coordination function (HCF). We found that HCF has several performance issues that may affect its anticipated performance. In this paper, we address these issues and propose a QoS enhancement over PCF, called enhanced PCF (EPCF) that enables Wireless LAN to send a combination of voice, data and isochronous data packets using the current IEEE 802.11 PCF. First, we compare the performance of the proposed model (EPCF) with the HCF function of the IEEE 802.11e through simulation. Second, we extend the proposed model (EPCF) to work in a multihop wireless ad hoc mode and present the advantages and limitations in this case. Simulation results demonstrate an enhanced performance of our scheme over the legacy PCF and a comparable performance to the IEEE 802.11e HCF in terms of the average delay and system throughput. However, EPCF is much simpler than HCF, provides flow differentiation, and is easy to implement in the current IEEE 802.11 standard.  相似文献   

10.
Hui  J.J.   《Ad hoc Networks》2010,8(2):165-180
In this paper, we investigate the low coverage problem of efficient broadcast protocols in wireless ad hoc networks with realistic physical layer models. To minimize energy consumption, efficient protocols aim to select small set of forward nodes and minimum transmission radii. In ideal physical layer model, nodes within forward nodes’ transmission ranges can definitely receive packets; therefore energy efficient protocols can guarantee full coverage for broadcasting. However, in networks with a realistic physical layer, nodes can only receive packets with probability. We present an analytical model to show that the transmission radii used for nodes can be used to establish a tradeoff between minimizing energy consumption and ensuring network coverage. We then propose a mechanism called redundant radius, which involves using two transmission radii, to form a buffer zone that guarantees the availability of logical links in the physical network, one for broadcast tree calculation and the other for actual data transmission. With this mechanism, we extend well-known centralized protocols, BIP and DBIP, and corresponding localized protocols, LBIP and LDBIP. The effectiveness of the proposed scheme in improving network coverage is validated analytically and by simulation.  相似文献   

11.
Mike  Tri Van  Alec   《Ad hoc Networks》2007,5(3):313-323
Many ad hoc routing algorithms rely on broadcast flooding for location discovery or, more generally, for secure routing applications. Flooding is a robust algorithm but because of its extreme redundancy, it is impractical in dense networks. Indeed in large wireless networks, the use of flooding algorithms may lead to broadcast storms where the number of collisions is so large that it causes system failure. To prevent broadcast storms, many mechanisms that reduce redundant transmissions have been proposed that reduce retransmission overhead either deterministically or probabilistically.Gossip is a probabilistic algorithm in which packet retransmission is based on the outcome of coin tosses. The retransmission probability can be fixed, dynamic or adaptive. With dynamic gossip, local information is used to determine the retransmission probability. With adaptive gossip, the decision to relay is adjusted adaptively based on the outcome of coin tosses, the local network structure, and the local response to the flooding call. The goal of gossip is to minimize the number of retransmissions, while retaining the main benefits of flooding, e.g., universal coverage, minimal state retention, and path length preservation.In this paper we consider ways to reduce the number of redundant transmissions in flooding while guaranteeing security. We present several new gossip protocols that exploit local connectivity to adaptively correct propagation failures and protect against Byzantine attacks. A main contribution of this work is that we introduce a cell-grid approach that allows us to analytically prove performance and security protocol properties. The last two gossip protocols that we give are fully adaptive, i.e., they automatically correct all faults and guarantee delivery, the first such protocols to the best of our knowledge.  相似文献   

12.
Clustering is a widely used solution to provide routing scalability in wireless ad hoc networks. In the literature, clustering schemes feature different characteristics and purposes, however few schemes are context-aware. This work proposes a new solution called Distributed and Location-aware Clustering (DiLoC), a clustering scheme designed to operate in indoor environments, providing mechanisms to gather context location information in order to ease the maintenance of clusters, thus resulting in a stabler network topology in order to provide a scalable network topology for an efficient routing. DiLoC considers three distinct approaches, regarding the characteristics of the deployment environment, aiming to cover infrastructure-less, infrastructure and hybrid network scenarios. DiLoC was evaluated and compared with a similar clustering scheme, featuring the stability, amount of clustered nodes and network load. Included results demonstrate a scalable algorithm with a significant high stability.  相似文献   

13.
The deployment of infrastructure-less ad hoc networks is suffering from the lack of applications in spite of active research over a decade. This problem can be solved to a certain extent by porting successful legacy Internet applications and protocols to the ad hoc network domain. Session Initiation Protocol (SIP) is designed to provide the signaling support for multimedia applications such as Internet telephony, Instant Messaging, Presence etc. SIP relies on the infrastructure of the Internet and an overlay of centralized SIP servers to enable the SIP endpoints discover each other and establish a session by exchanging SIP messages. However, such an infrastructure is unavailable in ad hoc networks. In this paper, we propose two approaches to solve this problem and enable SIP-based session setup in ad hoc networks (i) a loosely coupled approach, where the SIP endpoint discovery is decoupled from the routing procedure and (ii) a tightly coupled approach, which integrates the endpoint discovery with a fully distributed cluster based routing protocol that builds a virtual topology for efficient routing. Simulation experiments show that the tightly coupled approach performs better for (relatively) static multihop wireless networks than the loosely coupled approach in terms of the latency in SIP session setup. The loosely coupled approach, on the other hand, generally performs better in networks with random node mobility. The tightly coupled approach, however, has lower control overhead in both the cases. This work was partially done while the author was a graduate student in CReWMaN, University of Texas at Arlington. Dr. Nilanjan Banerjee is a Senior Research Engineer in the Networks Research group at Motorola India Research Labs. He is currently working on converged network systems. He received his Ph.D. and M.S. in computer science and engineering from University of Texas at Arlington. He received his B.E. degree in the same discipline from Jadavpur University, India. His research interests include telecom network architectures and protocols, identity management and network security, mobile and pervasive computing, measures for performance, modeling and simulation, and optimization in dynamic systems. Dr Arup Acharya is a Research Staff Member in the Internet Infrastructure and Computing Utilities group at IBM T.J. Watson Research Center and leads the Advanced Networking micropractice in On-Demand Innovation Services. His current work includes SIP-based services such as VoIP, Instant Messaging and Presence, and includes customer consulting engagements and providing subject matter expertise in corporate strategy teams. Presently, he is leading a IBM Research project on scalability and performance of SIP servers for large workloads. In addition, he also works on different topics in mobile/wireless networking such as mesh networks. He has published extensively in conferences/journals and has been awarded seven patents. Before joining IBM in 2000, he was with NEC C&C Research Laboratories, Princeton. He received a B.Tech degree in Computer Science from the Indian Institute of Technology, Kharagpur and a PhD in Computer Science from Rutgers University in 1995. Further information is available at Dr. Sajal K. Das is a Professor of Computer Science and Engineering and also the Founding Director of the Center for Research in Wireless Mobility and Networking (CReWMaN) at the University of Texas at Arlington (UTA). His current research interests include sensor networks, resource and mobility management in wireless networks, mobile and pervasive computing, wireless multimedia and QoS provisioning, wireless internet architectures and protocols, grid computing, applied graph theory and game theory. He has published over 400 research papers in these areas, holds four US patents in wireless internet and mobile networks. He received Best Paper Awards in IEEE PerCom’06, ACM MobiCom’99, ICOIN’02, ACM MSwiM’00 and ACM/IEEE PADS’97. He is also recipient of UTA’s Outstanding Faculty Research Award in Computer Science (2001 and 2003), College of Engineering Research Excellence Award (2003), the University Award for Distinguished record of Research (2005), and UTA Academy of Distinguished Scholars Award (2006). He serves as the Editor-in-Chief of Pervasive and Mobile Computing journal, and as Associate Editor of IEEE Transactions on Mobile Computing, ACM/Springer Wireless Networks, IEEE Transactions on Parallel and Distributed Systems. He has served as General or Program Chair and TPC member of numerous IEEE and ACM conferences. He is a member of IEEE TCCC and TCPP Executive Committees.  相似文献   

14.
Toby  Ying   《Ad hoc Networks》2009,7(8):1551
Many routing protocols and applications developed for ad hoc networks rely on location information of participating nodes. The exposure of such information, however, presents significant safety threats to the networks. In this paper, we investigate the problem of preventing an adversary from locating (and thus destroying) nodes based on their location information they disclose in communications. Our idea is to reduce location resolution to achieve a desired level of safety protection. We define the safety level of a geographic region to be the ratio of its area and the number of nodes inside it. The higher safety level a region has, the less attractive for an adversary to search over it for the nodes. When a node has to disclose its location, it can compute a cloaking box that meets a desired level of safety requirement and report that as its current location information. To implement this simple idea, there are several challenges. First, each cloaking box must be as small as possible in order to minimize the impact of reduced location resolution on the efficiency of network operating and applications. Second, nodes must be able to compute their cloaking boxes without having to reveal their accurate position. Finally, given a sequence of cloaking boxes, they must not be correlated to refine an area whose safety level is less than the requirement. Our research addresses these challenges with cost-effective solutions in the context of both stationary and mobile ad hoc networks. We evaluate the performance of our techniques through both mathematical analysis and simulation. In addition, we present a new geographic routing protocol which can work with blurred location information and evaluate the impact of location resolution reduction on the performance of this technique.  相似文献   

15.
In this paper we address the problem of finding the optimal performance region of a wireless ad hoc network when multiple performance metrics are considered. Our contribution is to propose a novel cross-layer framework for deriving the Pareto optimal performance bounds for the network. These Pareto bounds provide key information for understanding the network behavior and the performance trade-offs when multiple criteria are relevant. Our approach is to take a holistic view of the network that captures the cross-interactions among interference management techniques implemented at various layers of the protocol stack (e.g. routing and resource allocation) and determines the objective functions for the multiple criteria to be optimized. The resulting complex multiobjective optimization problem is then solved by multiobjective search techniques. The Pareto optimal sets for an example sensor network are presented and analyzed when delay, reliability and energy objectives are considered.  相似文献   

16.
Renato M.  Hamid R.  J.J.   《Ad hoc Networks》2006,4(5):607-620
We show that there is a trade-off among mobility, capacity, and delay in ad hoc networks. More specifically, we consider two schemes for node mobility in ad hoc networks. We divide the entire network by cells whose sizes can vary with the total number of nodes n, or whose size is independent of the number of nodes. We restrict the movement of nodes within these cells, calculate throughput and delay for randomly chosen pairs of source–destination nodes, and show that mobility is an entity that can be exchanged with capacity and delay. We also investigate the effect of directional antennas in a static network in which packet relaying is done through the closest neighbor and verify that this approach attains better throughput than static networks employing omnidirectional antennas.  相似文献   

17.
When striving for reliability, multicast protocols are most commonly designed as deterministic solutions. Such an approach seems to make the reasoning about reliability guarantees (traditionally, binary, “all-or-nothing”-like) in the face of packet losses and/or node crashes. It is however precisely this determinism that tends to become a limiting factor when aiming at both reliability and scalability, particularly in highly dynamic networks, e.g., ad hoc networks. Gossip-based multicast protocols appear to be a viable path towards providing multicast reliability guarantees. Such protocols embrace the non-deterministic nature of ad hoc networks, providing analytically predictable probabilistic reliability guarantees at a reasonable overhead.

This paper presents the Route Driven Gossip (RDG) protocol, a gossip-based multicast protocol designed precisely to meet a more practical specification of probabilistic reliability in ad hoc networks. Our RDG protocol can be deployed on any basic on-demand routing protocol, achieving a high level of reliability without relying on any inherent multicast primitive. We illustrate our RDG protocol by layering it on top of the “bare” Dynamic Source Routing protocol, and convey our claims of reliability and scalability through both analysis and simulation.  相似文献   


18.
介绍了采用超宽带UWB技术的Adhoc无线网络,重点阐述了网络的两个关键技MAC协议和路由算法协议.  相似文献   

19.
Gil  Adrian   《Ad hoc Networks》2003,1(4):405-421
The terrorist attacks on September 11, 2001 have drawn attention to the use of wireless technology in order to locate survivors of structural collapse. We propose to construct an ad hoc network of wireless smart badges in order to acquire information from trapped survivors. We investigate the energy efficient routing problem that arises in such a network and show that since smart badges have very limited power sources and very low data rates, which may be inadequate in an emergency situation, the solution of the routing problem requires new protocols. The problem is formulated as an anycast routing problem in which the objective is to maximize the time until the first battery drains-out. We present iterative algorithms for obtaining the optimal solution of the problem. Then, we derive an upper bound on the network lifetime for specific topologies and describe a polynomial algorithm for obtaining the optimal solution in such topologies. Finally, numerical results regarding the upper bound and the algorithms are presented.  相似文献   

20.
Using smart antennas in wireless ad hoc networks can offer tremendous potential for improving the network performance. This paper proposes a range-adaptive MAC protocol, called Ra-MAC, for wireless ad hoc networks using smart antennas. In contrast to the previous MAC protocols with only single-fold directional transmission range, we propose to use multi-fold transmission ranges, i.e., LD (Low-distance), MD (Mid-distance) and HD (High-distance), to arrange efficient communications between the senders and receivers. The transmission range is selected dynamically according to the distance between the communicating node-pair. Building on the multiple transmission ranges, we extend directional network allocation vector (DNAV) to range-based DNAV (R-DNAV) to make full use of wireless channels. Moreover, in order to deal with the basic problems (i.e., hidden terminals, deafness and capture) within smart antenna-based wireless networks, we further equip some optimizations such as half-sweeping start of dialog (SOD), extended directional virtual carrier sensing (DVCS) and so on to Ra-MAC, and then detailedly discuss how these optimizations contribute to address the problems. Simulation results indicate that Ra-MAC outperforms the existing directional MAC protocols and 802.11 DCF. Finally, we also make a brief qualitative comparison between all these protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号