首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Individual dosimetry service based on thermoluminescence (TLD) detectors has started its activity at the Institute of Nuclear Physics (IFJ) in Krakow in 1965. In 2002, the new Laboratory of Individual and Environment Dosimetry (Polish acronym LADIS) was established and underwent the accreditation according to the EN-PN-ISO/IEC 17025 standard. Nowadays, the service is based on the worldwide known standard thermoluminescent detectors MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P), developed at IFJ, processed in automatic thermoluminescent DOSACUS or RE2000 (Rados Oy, Finland) readers. Laboratory provides individual monitoring in terms of personal dose equivalent H(p)(10) and H(p)(0.07) in photon and neutron fields, over the range from 0.1 mSv to 1 Sv, and environmental dosimetry in terms of air kerma K(a) over the range from 30 μGy to 1 Gy and also ambient dose equivalent H*(10) over the range from 30 μSv to 1 Sv. Dosimetric service is currently performed for ca. 3200 institutions from Poland and abroad, monitored on quarterly and monthly basis. The goal of this paper is to identify the main activities leading to the highest radiation exposures in Poland. The paper presents the results of statistical evaluation of ~ 100,000 quarterly H(p)(10) and K(a) measurements performed between 2002 and 2009. Sixty-five per cent up to 90 % of all individual doses in Poland are on the level of natural radiation background. The dose levels between 0.1 and 5 mSv per quarter are the most frequent in nuclear medicine, veterinary and industrial radiography sectors.  相似文献   

2.
LiF is a well-known thermoluminescent (TL) material used in individual monitoring, and its fading characteristics have been studied for years. In the present study, the fading characteristics (for a period of 150 d) of various commercial LiF materials with different dopants have been evaluated. The materials used in the study are those used in routine procedures by the Personal Dosimetry Department of Greek Atomic Energy Commission and in particular, LiF:Mg,Ti (MTS-N, TL Poland), LiF:Mg,Cu,P (MCP-N, TL Poland), LiF:Mg,Cu,P (MCP-Ns, thin active layer detector, TL Poland) and LiF:Mg,Cu,P (TLD100H, Harshaw). The study showed that there is a sensitivity loss in signal of up to 20 % for the MTS-N material for a 150-d period in the pre-irradiation fading phase. The MCP-N has a stable behaviour in the pre-irradiation fading phase, but this also depends on the readout system. As far as the post-irradiation fading effect is concerned, a decrease of up to 20 % for the MTS-N material is observed for the same time period. On the other hand, the LiF:Mg,Cu,P material presents a stable behaviour within ± 5 %. These results show that the fading effect is different for each material and should be taken into account when estimating doses from dosemeters that are in use for >2 months.  相似文献   

3.
A method of measurement of radon concentration in air was developed, based on high-sensitivity LiF:Mg,Cu,P (MCP-N, TLD Poland) thermoluminescent detectors installed in charcoal canisters. The canisters were exposed typically for 72 h in a calibration chamber with a radon concentration ranging from 100 Bq x m(-3) to 87 kBq x m(-3). It was found that in these conditions the signal registered by the TL detectors was proportional to the 222Rn concentration and the lowest limit of detection (LLD) was at a level of 100 Bq x m(-3). The proposed method can be used in large-scale, multi-site surveys aimed at screening for high levels of indoor radon concentration or for measuring ground radon exhalation rates.  相似文献   

4.
The photon energy response of different RADOS (Mirion Technologies) personal dosemeters with MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P) thermoluminescence (TL) detectors was investigated. Three types of badges were applied. The irradiation with reference photon radiation qualities N (the narrow spectrum series), and S-Cs and S-Co nuclide radiation qualities, specified in ISO 4037 [International Organization for Standardization (ISO). X and gamma reference radiations for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy. ISO 4037. Part 1-4 (1999)], in the energy range of 16-1250 keV, were performed at the Dosimetry Laboratory Seibersdorf. The results demonstrated that a readout of a single MTS-N or MCP-N detector under the Al filter can be used to determine Hp(10) according to requirements of IEC 61066 [International Electrotechnical Commission (IEC). Thermoluminescence dosimetry systems for personal and environmental monitoring. International Standard IEC 61066 (2006)] for TL systems for personal dosimetry. The new RADOS badge with the experimental type of a holder (i.e. Cu/Al filters) is a very good tool for identifying the radiation quality (photon energy).  相似文献   

5.
Post-exposure annealing of highly sensitive LiF:Mg,Cu,P (MCP-N) detectors, at 100 degrees C over 10 or 20 min prior to readout, is usually recommended for routine dosimetry. The purpose of this anneal is to eliminate low-temperature peaks, especially peak 3, which fades at room temperature in about 3 months. However, as this annealing procedure does not entirely eliminate peak 3, 10% of its thermoluminescent (TL) signal still being readable, a fading correction must be applied. The aim of this work was to optimise the conditions of post-exposure treatment, i.e. its temperature and duration, in order to facilitate the use of MCP-N detectors in routine dosimetry. MCP-N detectors were annealed in standard conditions, i.e. at 240 degrees C over 10 min and exposed to a dose of 5 mGy (137Cs). For post-exposure annealing, six different temperatures between 100 degrees C and 150 degrees C and two time periods (10 and 20 min) were tested. TL glow curves were deconvoluted with the GCA code. A post-exposure anneal at 120 degrees C over 10 min was found to be optimal. Heating at this temperature eliminates 100% of the TL signal of peak 3, while maintaining the area and maximum intensity of the main peak 4 unchanged. In this case, no fading correction needs to be applied. Annealing at higher temperatures, up to 150 degrees C, results in a loss of peak 4 signal, and is therefore not recommended.  相似文献   

6.
Photon energy response of MTS-N (LiF:Mg,Ti) detectors (TLD Poland) and of MTS-N detectors sensitised with 200 Gy of 60Co gamma rays, followed by UV irradiation (sMTS-N), has been determined using X rays with narrow energy spectra, in the energy range from 20 to 300 keV. The over-response of LiF:Mg,Ti detectors for X rays (relative TL efficiency eta = 1.1) can be explained as an ionisation density effect. Low energy X rays produce short electron tracks, which locally deposit a high radiation dose and, consequently, lead to an enhanced (supralinear) response. This over-response has not been observed in sensitised MTS-N where supralinearity in the response after gamma ray doses above 1 Gy is not seen. Using the dose-response curves measured for MTS-N detectors after 137Cs gamma ray irradiation and local doses calculated using Monte Carlo generated electron tracks, it was possible to predict the relative TL effectiveness for different X ray energies. The calculation procedure can be applied to predict the photon energy response of LiF:Mg,Ti detectors in an arbitrary photon field.  相似文献   

7.
In this paper, the results aimed at assessing the performance of two varieties of LiF detectors (LiF:Mg,Ti and LiF:Mg,Cu,P) in photon fields relatively to reproducibility, detection threshold and angular dependence as defined in the ISO 12794 standard are presented. The fading properties and the limit of detection were also investigated for both materials. The results suggest that both LiF varieties are well suited for extremity monitoring. However, better fading properties of LiF:Mg,Cu,P when compared with LiF:Mg,Ti, combined with previous results relatively to energy dependence suggests that LiF:Mg,Cu,P dosemeters are better suited for extremity monitoring.  相似文献   

8.
Low-energy alpha particle and proton heavy charged particle (HCP) relative thermoluminescence (TL) efficiencies are calculated for the major dosimetric glow peak in LiF:Mg,Cu,P (MCP-N) in the framework of track structure theory (TST). The calculations employ previously published TRIPOS-E Monte Carlo track segment values of the radial dose in condensed phase LiF calculated at the Instituto National de Investigaciones Nucleares (Mexico) and experimentally measured normalised (60)Co gamma-induced TL dose-response functions, f(D), carried out at the Institute of Nuclear Physics (Poland). The motivation for the calculations is to test the validity of TST in a TL system in which f(D) is not supralinear (f(D) >1) and is not significantly dependent on photon energy contrary to the behaviour of the dose-response of composite peak 5 in the glow curve of LiF:Mg,Ti (TLD-100). The calculated HCP relative efficiencies in LiF:MCP-N are 23-87% lower than the experimentally measured values, indicating a weakness in the major premise of TST which exclusively relates HCP effects to the radiation action of the secondary electrons liberated by the HCP slowing down. However, an analysis of the uncertainties involved in the TST calculations and experiments (i.e. experimental measurement of f(D) at high levels of dose, sample light self-absorption and accuracy in the estimation of D(r), especially towards the end of the HCP track) indicate that these may be too large to enable a definite conclusion. More accurate estimation of sample light self-absorption, improved measurements of f(D) and full-track Monte Carlo calculations of D(r) incorporating improvements of the low-energy electron transport are indicated in order to reduce uncertainties and enable a final conclusion.  相似文献   

9.
A microdosimetric one hit detector model has been applied to calculate dose response, energy response and relative efficiency of thermoluminescent LiF:Mg,Cu,P (MCP-N), CaF2:Tm (TLD-300) and ESR alanine detectors on radiation of different qualities. For each detector type two model parameters, the target size and the saturation parameter, alpha, have been derived. Using those parameters and the microdosimetric distributions in nanometre size targets calculated using Monte Carlo track structure codes TRION and MOCA-14 it was possible to predict a great variety of experimental data for photons, X rays, beta electrons, protons, alpha particles and heavy ions. Due to a good reproducibility of experimental data some solid state detectors might be useful to test biophysical models of radiation action. Furthermore, these models can give some insight into the physics of radiation action in solid state detectors such as the range of charge interaction, energy levels etc.  相似文献   

10.
The Health Protection Agency is changing from using detectors made from 7LiF:Mg,Ti in its photon/electron personal dosemeters, to 7LiF:Mg,Cu,P. Specifically, the Harshaw TLD-700H card is to be adopted. As a consequence of this change, the dosemeter holder is also being modified not only to accommodate the shape of the new card, but also to optimize the photon and electron response characteristics of the device. This redesign process was achieved using MCNP-4C2 and the kerma approximation, electron range/energy tables with additional electron transport calculations, and experimental validation, with different potential filters compared; the optimum filter studied was a polytetrafluoroethylene disc of diameter 18 mm and thickness 4.3 mm. Calculated relative response characteristics at different angles of incidence and energies between 16 and 6174 keV are presented for this new dosemeter configuration and compared with measured type-test results. A new estimate for the energy-dependent relative light conversion efficiency appropriate to the 7LiF:Mg,Cu,P was also derived for determining the correct dosemeter response.  相似文献   

11.
There are three main methods used in individual monitoring: radiographic films, thermoluminescence (TL) and optically stimulated luminescence (OSL). Distinguishing between static (e.g. by leaving it accidentally or purposely in the radiation field) and dynamic exposures can be almost routinely performed for radiographic and OSL methods but is still unsolved for TL detectors. The main aim of this work is to develop a method for identifying static exposures of standard TL detectors at doses which are typical of radiation protection. For this purpose, a new TLD reader equipped with a CCD camera was developed to measure the two-dimensional signal map and not only the total light emitted (as is performed with standard photomultiplier-based TL readers). Standard MCP-N (LiF:Mg,Cu,P) TL pellets of 4.5 mm diameter and 0.9 mm thickness were installed in the standard Rados TL personal badges with special, non-uniform filters and exposed statically to 33 keV X-ray beams at three angles: 0 degrees , 30 degrees and 60 degrees . The detectors were readout in the CCD camera reader and 2-D images were collected. The analysis of these CCD images allows the identification of the static exposure cases and partly the angle of incidence at a dose level of 20 mSv.  相似文献   

12.
Among the activities of EURADOS Working Group 2 formed by experts from several European countries is the harmonisation of individual monitoring as part of radiation protection of occupationally exposed persons. Here, we provide information about thermoluminescent detectors (TLDs) applied by the European dosimetric services and the dosimetric characteristics of dosemeters in which these detectors are applied. Among 91 services from 29 countries which responded to the EURADOS questionnaire, 61 apply dosemeters with TLDs for the determination of personal dose equivalent H(p)(10) for photons and beta radiation, and 16 services use TLDs for neutron albedo dosemeters. Those most frequently used are standard lithium fluoride TLDs (mainly TLD-100, TLD-700, Polish MTS-N and MTS-7, Russian DTG-4), high-sensitive lithium fluoride (GR-200, MCP-N) and lithium borate TLDs. Some services use calcium sulphate and calcium fluoride detectors. For neutron dosimetry, most services apply pairs of LiF:Mg,Ti TLDs with (6)Li and (7)Li. The characteristics (energy response) of individual dosemeters are mainly related to the energy response of the detectors and filters applied. The construction of filters in dosemeters applied for measurements of H(p)(10) and their energy response are also reviewed.  相似文献   

13.
On the basis of the newly discovered behaviour of LiF:Mg,Cu,P detectors at high and ultra-high doses, a new method of thermoluminescence (TL) measurement of radiation doses ranging from micrograys up to a megagray, has been recently developed at the Institute of Nuclear Physics (IFJ). The method is based on the relationship between the TL signal, integrated in the given temperature range and dose. It is quantified by a parameter called the 'ultra-high temperature ratio'. It has been demonstrated that this new method can measure radiation doses in the range of about 1 μGy to 1 MGy, using a single LiF:Mg,Cu,P detector. This method was recently successfully blindly tested for 10 MeV electrons up to doses of 200 kGy. It can be used for dosimetry in high-energy accelerators, especially in the Large Hadron Collider at CERN, and has great potential for accident dosimetry in particular.  相似文献   

14.
The simulation of response of a new passive area dosemeter for measuring ambient dose equivalent H*(10) for photons has been performed using the Monte Carlo code MCNP and experimentally determined responses of LiF:Mg,Ti and LiF:Mg,Cu,P thermoluminescent (TL) detectors for hard-filtered X-ray spectra from 20 to 300 keV and for 137Cs and 60Co gamma radiation. Relative TL efficiency for both types of detectors, determined in experiments with bare detectors and similar Monte Carlo simulations, compared favourably with prediction of microdosimetric models for proposed microdosimetric target sizes in the range of 20-40 nm. The concluding verification experiment showed small deviations between measured and simulated dosemeter energy response values in the range of a few percent.  相似文献   

15.
Conversion factors for the purpose of mobile survey by car in the Chernobyl area have been evaluated using simulation calculations. In the calculations, the width of road is assumed as being 4 m, 10 m and 20 m and the surrounding area is divided into ten zones contaminated homogeneously by 137Cs with different depth profiles in the ground. The air kerma contribution from all zones to the road is simulated. A conversion factor is calculated by dividing the air kerma rate in typical land-use adjacent to the road by that on the road. Conversion factors in various land uses around the roads are examined. The calculated conversion factors agree with the conversion factors measured in the Chernobyl area within an accuracy of 20%. Further, basic data, needed for composing conversion factors appropriate to other contaminated regions with different depth distributions from the Chernobyl area, are also indicated.  相似文献   

16.
In personnel monitoring services, it is important to omit the high-temperature annealing process so that large numbers of TL detectors can be produced economically. There are two efficient ways of reducing the residual signal of LiF:Mg,Cu,P. One is by increasing the maximum readout temperature and the other is by improving the preparation procedure (increasing the Cu concentration and the sintering temperature) but both reduce the TL sensitivity. In personal dosimetry the real dosimetric signals are separated from the residual signals by computerised analysis of glow curves. The adverse influence of the high residual signals of LiF:Mg.Cu.P TL material has been effectively eliminated and the sensitivity remains stable. A good dosimetric result using only reader measurement without pre-irradiation oven annealing is attained in a dose range of 50-80,000 microGy.  相似文献   

17.
This paper reports the results of a study using a commercial routine read out system with non-contact hot nitrogen heating and linear heating gas profiles. Glow curves of LiF:Mg,Ti as well as LiF:Mg,Cu,P were analysed for different linear heating rates beta from 1 to 30 degrees K s(-1). Different thermoluminescent detectors (TLDs) of different thicknesses (0.38-0.90 mm) were studied and compared. By means of the application of CGCD program considering kinetic parameters of the used TL-material the analysis of the peak temperature of the individual TL peaks lead to the approximation of the real heating profile T(chip)(t) in the TL chip. The real heating profile deviates strongly from linearity and can be characterised by the solution of a differential equation T(chip)(t) = F [T(gas)(t)]. The model of this equation is discussed in the paper. The difference between gas and chip temperatures are heating rate and chip thickness dependent and reach values of up to 100 degrees C (for thick detectors and fast heating rates). Especially for LiF:Cu,P, knowledge of the real chip temperature is essential, since read out shall be performed at the highest possible temperature, without destroying the dosimetric properties of the material. On the basis of this work, an optimisation of the readout parameters for LiF:Cu,P is possible.  相似文献   

18.
The ENEA photon dosemeter, introduced in 1995, consisting of two differently filtrated LiF(Mg,Cu,P) detectors, has been modified recently. The ABS (acrylonitrile butadiene styrene) plastic support has been replaced by a new aluminium card supporting the same two detectors (LiF(Mg,Cu,P) GR200). The new card, fully developed at the ENEA-Radiation Protection Institute (which is going to be patented), can now be processed through a Harshaw Model 6600 Automated TLD Reader, a hot gas reader. This paper reports the results of the individual calibration of approximately 60,000 LiF(Mg,Cu,P) GR200 detectors inserted on the new aluminium cards. Before the implementation in routine of the new cards, the reader has been characterised. Steps and tests to be made to use the card in routine (i.e. reader stability, linearity, reproducibility, etc.) are reported. The whole dosimetric system now combines the very good performances of the Harshaw Model 6600 reader and that of LiF(Mg,Cu,P) thermoluminescent material.  相似文献   

19.
20.
The energy responses for the KLT-300(LiF:Mg,Cu,Na,Si, Korea), GR-200(LiF:Mg,Cu,P, China) and MCP-N(LiF:Mg,Cu,P, Poland) thermoluminescence(TL) pellets were studied for a photon radiation with energies from 1.25 MeV(60Co) to 21 MV (Microtron) to verify the usefulness of the calibration for the radiotherapy beams. The International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) have performed thermoluminescence dosimetry (TLD) audits to verify the calibration of the beams by TL powder, but TL pellets were used in this study because the element correction factor (ECF), defined as the factor to correct the variations that all TL dosemeters cannot be manufactured to have exactly the same TL efficiency, for each TL pellet could be accurately derived and be handled conveniently when compared with the powder. Also several works for the energy response of the TLDs were done for the low-energy photon beams up to 60Co, but they will be extended in this experiment to the high photon energies (up to 20 MV), which are widely used in the therapy level of a radiation. The PTW 30006 ionisation chamber was calibrated by the Korea primary standards to establish the air-kerma rates and the TL pellets were irradiated in a specially designed waterproof pellet holder in a water phantom (30 x 30 x 30 cm3) just like the IAEA postal audits programme. This result was compared with that of another type of phantom [10 (W) x 10 (L) x 10 (H) cm3 PMMA Perspex phantom for the 60Co and 6 MV photon, and 10 x 10 x 20 (H) cm3 for the 10 and 21 MV photon] for its convenient use and easy handling and installation in a hospital. The results show that the differences of the responses for the water phantom and PMMA Perspex phantom were negligible, which is contrary to the general conception that a big difference would be expected. For an application of these results to verify the therapy beams, an appropriate energy correction factor should be applied to the energies and phantom types in use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号