首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The use of dodecylbenzenesulfonate-doped poly(pyrrole) films, PPYDBS, as a secondary battery electrode was studied. The redox and morphologic properties of these films are suitable for battery application. Films were synthesized by electrolysis of pyrrole and sodium dodecylbenzenesulfonate aqueous solutions with a current density of 1.0 mA cm−2 and were switched in LiC1O4 1.0 M propylene carbonate solutions (PC) by cyclic voltammetry. In these experiments an apparent diffusion coefficient of 3.7x10−9 cm2s−1 has been found. Charge/discharge tests at ±50, ±100, ±150 and ±200 μA cm−2 were done for a PPYDBS/ LiC1O4, PC/Li battery. The open-circuit voltage was 3.2 V after 30 h, the specific capacity 53 A h kg−1 and the energy density 154 W h kg−1. These values indicate that this polymer can be used as an electrode in a rechargeable battery.  相似文献   

2.
Vehicle trials with the first sodium/nickel chloride ZEBRA batteries indicated that the pulse power capability of the battery needed to be improved towards the end of the discharge. A research programme led to several design changes to improve the cell which, in combination, have improved the power of the battery to greater than 150 W kg−1 at 80% depth of discharge. Bench and vehicle tests have established the stability of the high power battery over several years of cycling. The gravimetric energy density of the first generation of cells was less than 100 Wh kg−1. Optimisation of the design has led to a cell with a specific energy of 120 Wh kg−1 or 86 Wh kg−1 for a 30 kWh battery. Recently, the cell chemistry has been altered to improve the useful capacity. The cell is assembled in the over-discharged state and during the first charge the following reactions occur: at 1.6 V: Al+4NaCl=NaAlCl4+3Na; at 2.35 V: Fe+2NaCl=FeCl2+2Na; at 2.58 V: Ni+2NaCl=NiCl2+2 Na. The first reaction serves to prime the negative sodium electrode but occurs at too low a voltage to be of use in providing useful capacity. By minimising the aluminium content more NaCl is released for the main reactions to improve the capacity of the cell. This, and further composition optimisation, have resulted in cells with specific energies in excess of 140 Wh kg−1, which equates to battery energies>100 Wh kg−1. The present production battery, as installed in a Mercedes Benz A class electric vehicle, gives a driving range of 205 km (128 miles) in city and hill climbing. The cells with improved capacity will extend the practical driving range to beyond 240 km (150 miles).  相似文献   

3.
Electrochemical behavior of zinc and polyaniline (PANI) electrode polymerized from 0.1 M HCl and 0.1 M aniline on graphite electrode, in 0.2 M ZnCl2 and 0.50 M NH4Cl (chloride electrolyte) and with addition of 0.33 M Na-citrate (chloride/citrate electrolyte) were investigated. In the chloride/citrate comparing with chloride containing electrolyte for the zinc electrode negative shift of the open circuit potential of 150 mV, decreases of exchange current density for more than order of magnitude and increase of cathodic Tafel slope, due to the zinc ions complexation, were observed. In citrate/chloride electrolyte zinc dendrite formation were completely suppressed. PANI electrodes show better discharge characteristic in chloride/citrate electrolyte with determined maximum discharge capacity of 164 mAh g−1.  相似文献   

4.
PolyStor has teamed with Hawker Eternacell (US) to develop a BB-2590/U rechargeable lithium-ion battery under contract with the US Army CECOM (Ft. Monmouth, NJ, USA). The concept involves using commercially available ICR-18650 cylindrical lithium-ion cells. The individual cells have a high specific energy of 135 Wh kg−1 and an energy density of 335 Wh dm−3. Electronic circuitry was developed to provide pack protection, charge equalization and battery management (fuel gauging). PolyStor's rechargeable BB-2590/U battery provides 4.5 Ah at 28 V nominal or 9.0 Ah at 14 V nominal, translating into 108 Wh kg−1 and 150 Wh dm−3. The key developments are discussed in this paper.  相似文献   

5.
Ultralife Batteries delivered the world's first commercial shipments of solid polymer rechargeable batteries in 1997. The battery consists of a LixMn2O4 based cathode, graphite anode and proprietary polymeric separator. Energy density of the batteries exceeds 120 W h kg−1 and 200 W h dm−3 at the C rate. Pulse capability up to 5 C has been demonstrated. More than 90% of the initial C rate capacity remains after 500 continuous cycles at room temperature. These solid polymer rechargeable batteries also show good low and high temperature performance and have good safety characteristics.  相似文献   

6.
Supercapacitors using carbon nanotubes films by electrophoretic deposition   总被引:2,自引:0,他引:2  
Multi-walled carbon nanotube (MWNT) thin films have been fabricated by electrophoretic deposition technique in this study. The supercapacitors built from such thin film electrodes have exhibited near-ideal rectangular cyclic voltammograms even at a scan rate as high as 1000 mV s−1 and a high specific power density over 20 kW kg−1. More importantly, the supercapacitors showed superior frequency response, with a frequency ‘knee’ at about 7560 Hz, which is more than 70 times higher than the highest ‘knee’ frequency (100 Hz) so far reported for such supercapacitors. Our study also demonstrated that these carbon nanotube thin films can serve as a coating layer over ordinary current collectors to drastically enhance the electrode performance, indicating the huge potential in supercapacitor and battery manufacturing. Finally, it is clear that electrophoretic deposition is a promising technique for massive fabrication of carbon nanotube electrodes for various electronic devices.  相似文献   

7.
Polyaniline (PAn), synthesized by electro-polymerization, has exhibited good reversibility in an LiClO4/propylene carbonate electrolyte. The reversible specific capacity reaches 120 A h kg−1. PAn appears to be a candidate positive electrode for a secondary lithium battery because of its reversibility, high-rate discharge performance, and low self-discharge. The compatibility of the electrolyte between PAn and lithium electrodes is an important problem to be solved.  相似文献   

8.
The redox behavior of a decavanadium complex [(V=O)102-O)93-O)3(C5H7O2)6] (1) was studied using cyclic voltammetry under acidic and basic conditions. The reduction potential of V(V) was found at less positive potentials for higher pH electrolyte solutions. The oxygen reduction at complex 1 immobilized on a modified electrode was examined using cyclic voltammetry and rotating ring-disk electrode techniques in the 1 M KOH solutions. On the basis of measurements using a rotating disk electrode (RDE), the complex 1 was found to be highly active for the direct four-electron reduction of dioxygen at −0.2 V versus saturated calomel electrode (SCE). The complex 1 as a reduction catalyst of O2 with a high selectivity was demonstrated using rotating ring-disk voltammograms in alkaline solutions. The application of complex 1 as an oxygen reduction catalyst at the cathode of zinc–air cell was also examined. The zinc–air cell with the modified electrode showed a stable discharge potential at approximately 1 V with discharge capacity of 80 mAh g−1 which was about five times larger than that obtained with the commonly used manganese dioxide catalyst.  相似文献   

9.
Porous, thin films of copper molybdenum sulfides (Cu3+δMo6S7.9), that have been prepared by the technique of painting and subsequent reaction with mixed H2/H2S gases at 500 °C, have been used as a cathode material for lithium secondary batteries. The test cell comprised: Li/2 M LiClO4 in PC-THF (4:6)/Cu3+δMo6S7.9 (porous, thin film). The discharge reaction proceeded via the intercalation of lithium ions into the structural interstices of the cathode material.

The first discharge curve of the cell showed that the porous film could incorporate up to 18 lithium ions per formula unit. The capacity of the thin film was four times higher than that previously reported for powder or pressed-pellet electrodes. The theoretical energy density was 675 W h kg−1, i.e., higher than that of TiS2 (455 W h kg−1) which is one of the best materials for high-energy lithium batteries. From X-ray diffraction studies of the lithium incorporated in the thin film at each discharge step, it is suggested that there are four incorporation reactions of lithium ions into the cathode. Finally, cycling tests have been conducted at room temperature.  相似文献   


10.
The cathode is a key component in low temperature solid oxide fuel cells. In this study, composite cathode, 75 wt.% Sm0.5Sr0.5CoO3 (SSC) + 25 wt.% Sm0.2Ce0.8O1.9 (SDC), was applied on the cermet supported thin SDC electrolyte cell which was fabricated by tape casting, screen-printing, and co-firing. Single cells with the composite cathodes sintered at different temperatures were tested from 400 to 650 °C. The best cell performance, 0.75 W cm−2 peak power operating at 600 °C, was obtained from the 1050 °C sintered cathode. The measured thin SDC electrolyte resistance Rs was 0.128 Ω cm2 and total electrode polarization Rp(a + c) was only 0.102 Ω cm2 at 600 °C.  相似文献   

11.
A three-electrode Li-ion cell with metallic lithium as the reference electrode was designed to study the charging process of Li-ion cells. The cell was connected to three independent testing channels, of which two channels shared the same lithium reference to measure the potentials of anode and cathode, respectively. A graphite/LiCoO2 cell with a C/A ratio, i.e., the reversible capacity ratio of the cathode to anode, of 0.985 was assembled and cycled using a normal constant-current/constant-voltage (CC/CV) charging procedure, during which the potentials of the anode and cathode were recorded. The results showed that lithium plating occurred under most of the charging conditions, especially at high currents and at low temperatures. Even in the region of CC charging, the potential of the graphite might drop below 0 V versus Li+/Li. As a result, lithium plating and re-intercalating of the plated lithium into the graphite coexist, which resulted in a low charging capacity. When the current exceeded a certain level (0.4C in the present case), increasing the current could not shorten the charging time significantly, instead it aggravated lithium plating and prolonged the CV charging time. In addition, we found that lowering the battery temperature significantly aggravated lithium plating. At −20 °C, for example, the CC charging became impossible and lithium plating accompanied the entire charging process. For an improved charging performance, an optimized C/A ratio of 0.85–0.90 is proposed for the graphite/LiCoO2 Li-ion cell. A high C/A ratio results in lithium plating onto the anode, while a low ratio results in overcharge of the cathode.  相似文献   

12.
Dense yttria-stabilized zirconia (YSZ) electrolyte films were successfully fabricated onto anode substrates using a modified dry pressing process. The film thickness was uniform, and could be readily controlled by the mass of the nanocrystalline YSZ powders. The electrolyte films adhered well to the anode substrates by controlling the anode composition. An anode-supported solid oxide fuel cell (SOFC) with a dense YSZ electrolyte film of 8 μm in thickness was operated at temperatures from 700 to 800 °C using humidified (3 vol% H2O) hydrogen as fuel and air as oxidant. An open circuit voltage of 1.06 V and a maximum power density of 791 mW cm−2 were achieved at 800 °C. The results indicate that the gas permeation through the electrolyte film was negligible, and that good performance can be obtained by this simple and cost-effective technique which can significantly reduce the fabrication cost of SOFCs.  相似文献   

13.
Composite polymer electrolyte membranes consisting of covalently cross-linked sulfonated polyether ether ketone (SPEEK) with tungstophosphoric acid (TPA) are prepared and their electrochemical and mechanical properties are investigated with regards to application in water electrolysis. Covalently cross-linked membranes (CL-SPEEK) comprised of sulfochlorinated SPEEK membranes and SPEEK partially lithiated by LiCl, are prepared by reaction with 1,4-diiodobutane, and blended with TPA to avoid excessive water swelling and to reinforce their mechanical properties. These ion-exchange membranes show good electrochemical properties, including proton conductivity, ion exchange capacity (IEC), thermal stability, anti-oxidative stability, and satisfactory mechanical characteristics, such as tensile strength and elongation. In particular, among the TPA-composite membranes, the CL-SPEEK/TPA30 (30 wt.% TPA) membrane displays higher proton conductivity (0.128 S cm−1) and tensile strength (75.01 MPa) than Nafion® 117 at 80 °C. The ion-exchange membranes are used to construct membrane electrode assemblies (MEAs) of use in polymer electrolyte membrane electrolysis (PEME). The MEA are prepared using a non-equilibrium impregnation–reduction (I–R) method. The electrochemical surface area (ESA) and roughness factor of the MEA prepared with CL-SPEEK/TPA30 electrolyte measured by cyclic voltammetry are 25.11 m2 g−1 and 321.4 cm2 Pt cm−2, respectively. The prepared MEAs are used in the water-electrolysis unit cells. The cell voltage is 1.78 V at 1 A cm−2 and 80 °C, with a platinum loading of 1.28 mg cm−2. The results of the present study suggest that the good conductivity and mechanical properties of covalently CL-SPEEK/TPA composite membranes make them well suited for use in PEME.  相似文献   

14.
The discharge characteristics of manganese dioxide (γ-MnO2 of electrolytic manganese dioxide (EMD) type) as a cathode material in a Zn–MnO2 battery containing saturated aqueous LiOH electrolyte have been investigated. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) data on the discharged material indicate that lithium is intercalated into the host structure of EMD without the destruction of its core structure. The XPS data show that a layer of insoluble material, possibly Li2CO3, is deposited on the cathode, creating a barrier to H2O, thus preventing the formation of Mn hydroxides, but allowing the migration of Li ions into the MnO2 structure. The cell could be reversibly charged with 83% of voltaic efficiency at 0.5 mA/cm2 current density to a 1.9 V cutoff voltage. The percentage utilization of the cathode material during discharge was 56%.  相似文献   

15.
Zhang Shimin   《Journal of power sources》2006,160(2):1442-1446
In a Zn–FeCl3 battery, zinc granules were used as the anode and ammonium chloride as the electrolyte in both the anode and cathode zones, with ferric chloride as the active cathode substance and carbon felt as an inert cathode. A PE-01 homogeneous membrane was used as the membrane between the anode and cathode zones, with 100 ml of solution in both the anode and cathode zones. The charge/discharge characteristic of the battery was investigated for various concentrations of ferric chloride and ammonium chloride. At present, there are still some difficulties in using this zinc–ferric chloride battery as a rechargeable battery because zinc cannot be electrodeposited very well. However, it can possibly be used as a fuel cell and the operating lifetime of the fuel cell is very long. The actual energy density of a Zn–FeCl3 fuel cells is approximately equal to the actual energy density of a Pb–PbO2 battery. When a mixed solution of 2 M ferric chloride and 2 M ammonium chloride was used in the cathode zone with 4–5 M ammonium chloride in the anode zone, a better discharge characteristic was obtained, with a discharge time of approximately 14–15 h at 5 Ω. The most remarkable advantages for Zn–FeCl3 fuel cell are that both zinc and ferric chloride are very cheap and environmentally friendly, with flat discharge voltage characteristics.  相似文献   

16.
The utility of the high-temperature superconductor, YBa2Cu3O7-itx, as the cathode material for an all-solid-state lithium cell has been examined. The capacity of YBa2Cu3O7-x, is 223 mA h g−1 and the discharge efficiency is> 92%. Measurements of a.c. impedance show that the charge-transfer resistance at the interface of the electrolyte/cathode is very low and increases with the depth-of-discharge of the battery. Studies using X-ray photoelectron spectroscopy (XPS) reveal that the cathode becomes doped with Li+ ions as the cell discharges.  相似文献   

17.
Fibrous polyaniline (f-PANI) has displayed a maximum discharge capacity of 164 A h kg−1, a low rate of self-discharge, and a long life as a positive active material in a secondary lithium battery.  相似文献   

18.
Screen-printing technology was developed to fabricate Ce0.8Sm0.2O1.9 (SDC) electrolyte films onto porous NiO–SDC green anode substrates. After sintering at 1400 °C for 4 h, a gas-tight SDC film with a thickness of 12 μm was obtained. A novel cathode material of Ba0.5Sr0.5Co0.8Fe0.2O3−δ was subsequently applied onto the sintered SDC electrolyte film also by screen-printing and sintered at 970 °C for 3 h to get a single cell. A fuel cell of Ni–SDC/SDC (12 μm)/Ba0.5Sr0.5Co0.8Fe0.2O3−δ provides the maximum power densities of 1280, 1080, 670, 370, 180 and 73 mW cm−2 at 650, 600, 555, 505, 455 and 405 °C, respectively, using hydrogen as fuel and stationary air as oxidant. When dry methane was used as fuel, the maximum power densities are 876, 568, 346 and 114 mW cm−2 at 650, 600, 555 and 505 °C, respectively. The present fuel cell shows excellent performance at lowered temperatures.  相似文献   

19.
The development of a cathode catalyst layer based on a supported Pt catalyst using an ordered mesoporous carbon (OMC) for direct methanol fuel cell is reported. An OMC with a mesopore structure between hexagonally arranged carbon nanorods is prepared using a template method. Platinum nanoparticles are supported on the OMC (Pt/OMC) with high metal loading of 60 wt.%. Compositional and morphological variations are made by varying the ionomer content and by compressing the catalyst layer to detect a parameter that determines the power performance. Increase in power density with decrease in the volume fraction of ionomer in the agglomerate comprising the Pt/OMC and the ionomer indicates that mass transport through the ionomer phase governs the kinetics of oxygen reduction. Impedance spectroscopic analysis suggests that a significant mass-transport limitation occurs at high ionomer content and in the compressed cathode. The power density of the optimum cathode layer, which employs a Pt/OMC catalyst with a Pt loading of 2 mg cm−2, is greater than that of a catalyst layer with 6 mg cm−2 Pt-black catalyst at a voltage higher than 0.4 V. This would lead to a significant reduction in the cost of the membrane electrode assembly.  相似文献   

20.
We studied an inorganic composite membrane as the separator for Li-ion batteries. Being made of mainly CaCO3 powder and a small amount of polymer binder, the composite membrane has excellent wettability with liquid electrolytes due to its high porosity and good capillarity. Ionic conductivity of the membrane can be easily achieved by absorbing a liquid electrolyte. Additional benefit of such a membrane is that the alkali CaCO3 can scavenge acidic HF, which is inevitably present in the LiPF6-based electrolytes used currently in the Li-ion batteries. In this work, we typically evaluated a membrane with the composition of 92:8 (wt.) CaCO3/Telfon by using a 1.0 m LiPF6 dissolved in a 3:7 (wt.) mixture of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) as the liquid electrolyte. Ionic conductivity of the electrolyte-wetted membrane was measured to be 2.4 mS cm−1 at 20 °C versus 8.0 mS cm−1 of the liquid electrolyte. With the said membrane as a separator, both Li/graphite and Li/cathode half-cells exhibited good capacity retention. We also found that the Li-ion cell fabricated in this manner not only had stable capacity retention, but also showed good high-rate performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号