首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NaxCa1−2xLuxyNdyF2 single crystals were grown from the melt using the precise atmosphere control type Micro-Pulling-Down (μ-PD) method to investigate their potential as a vacuum-ultraviolet (VUV) scintillators. The grown crystals were single-phase materials with fluorite-type structure (Fm-3m, Z = 4) as confirmed by XRD. The crystals demonstrated 80-90% transmittance above 200 nm wavelength and Nd3+ 5d-4f luminescence (when exited by X-ray) observed around 185 nm. The radioluminescence measurements under 5.5 MeV α-ray excitation (241Am) demonstrated the light yield of 48 [Ph/5.5 MeV-α] and the decay time of 6.4-7.7 ns.  相似文献   

2.
The crystals of 1 mol% Ce-doped LuLiF4 (Ce:LLF) grown by the micro-pulling down (μ-PD) method and 1 mol% Ce-doped LuScBO3 (Ce:LSBO) grown by the conventional Czochralski (Cz) method were examined for their scintillation properties. Ce:LLF and Ce:LSBO demonstrated ∼80% transparency at wavelengths longer than 300 and 400 nm, respectively. When excited by 241Am α-ray to obtain radioactive luminescence spectra, Ce3+ 5d-4f emission peaks were detected at around 320 nm for Ce:LLF and at around 380 nm for Ce:LSBO. In Ce:LSBO, the host luminescence was also observed at 260 nm. By recording pulse height spectra under γ-ray irradiation, the absolute light yield of Ce:LLF and Ce:LSBO was measured to be 3600±400 and 4200±400 ph/MeV, respectively. Decay time kinetics was also investigated using a pulse X-ray equipped streak camera system. The main component of Ce:LLF was ∼320 ns and that of Ce:LSBO was ∼31 ns. In addition, the light yield non-proportionality and energy resolution against the γ-ray energy were evaluated.  相似文献   

3.
Sixty millimeter diameter single crystal of Nd3+ doped LiLuF4 was successfully grown by the Czochralski technique. No remarkable absorption due to unfavorable impurities was observed from optical absorption measurements in the vacuum ultra-violet spectral region. The high crystallinity and homogeneous luminescence characteristics were found from X-ray rocking curve and cathode-ray luminescence respectively. X-ray excited luminescence spectrum was measured and the significant 4f25d-4f3 luminescence at 182 nm was observed in the grown crystal. The pulse height spectrum was taken upon γ-ray irradiation. As a result, the grown crystals demonstrated sufficient response to the γ-ray showing the light yield of 420 ± 30 photons/MeV. The decay curve under α-ray irradiation was also investigated and described by two component decay kinetics which consists of the decay constants of 34 and 450 ns.  相似文献   

4.
Yellow-emitting Ca-α-SiAlON:Eux phosphor powders have been synthesized by the carbothermal-reduction–nitridation of a homogeneous Ca–Si–Al–Eu–C–O mixture at 1550 °C in flowing nitrogen. The resulting phosphor powder emits yellow luminescence with a peak wavelength at 575–590 nm under ultraviolet excitation at 370 nm. Compared with commercial Ce3+-doped yttrium aluminum garnet (YAG:Ce3+) phosphor powder, the synthesized Ca-α-SiAlON:Eux phosphor powder exhibits better thermal stability.  相似文献   

5.
Ce and Eu doped LiSrAlF6 (LiSAF) single crystals for the neutron detection with different dopant concentrations were grown by the micro-pulling-down method (μ-PD). In Ce:LiSAF, intense emission peaks due to Ce3+ 5d-4f transitions were observed at approximately 315 and 335 nm in photo- and α-ray induced radio-luminescence spectra. In case of Eu:LiSAFs, an intense emission peak at 375 nm due to Eu2+ 5d-4f transition was observed in the radio-luminescence spectra. The pulse height spectra and decay time profiles were measured under 252Cf neutron irradiation to examine the neutron response. The Ce 3% and Eu 2% doped LiSAF showed the highest light yield of 2860 ph/n with 19 ns main decay time component and 24,000 ph/n with 1610 ns.  相似文献   

6.
Er-doped Lu3Al5O12 (Er:LuAG) single crystalline scintillators with different Er concentrations of 0.1, 0.5, 1, and 3% were grown by the micro-pulling-down (μ-PD) method. The grown crystals were composed of single-phase material, as demonstrated by powder X-ray diffraction (XRD). The radioluminescence spectra measured under 241Am α-ray excitation indicated host emission at approximately 350 nm and Er3+ 4f-4f emissions. According to the pulse height spectra recorded under γ-ray irradiation, the 0.5% Er:LuAG exhibited the highest peak channel among the samples. The γ-ray excited decay time profiles were well fitted by the two-component exponential approximation (0.8 μs and 6-10 μs).  相似文献   

7.
This communication reports optical properties and radiation responses of Pb2+ 0.5 and 1.0 mol%-doped YCa4O(BO3)3 (YCOB) single crystals grown by the micro-pulling-down (μ-PD) method for neutron scintillator applications. The crystals had no impurity phases according to the results of X-ray powder diffraction. These Pb2+-doped crystals demonstrated blue-light luminescence at 330 nm because of Pb2+1S0-3P0,1 transition in the photoluminescence spectra. The main emission decay component was determined to be about 250-260 ns under 260 nm excitation wavelength. When irradiated by a 252Cf source, the relative light yield of 0.5% Pb2+-doped crystal was about 300 ph/n that was determined using the light yield of a reference Li-glass scintillator.  相似文献   

8.
Eu2+ 0.1, 0.5, 1, and 2 mol% doped LiCaAlF6 single crystalline scintillators were grown by the micro-pulling down (μ-PD) method. Eu2+ 2 mol% doped LiCaAlF6 was also prepared using the Czochralski method. In the transmittance spectra, 4f-5d absorption lines appeared around 200-220 and 290-350 nm. An intense emission at 375 nm due to Eu2+ 5d-4f transition was observed under 241Am α-ray excitation. When 252Cf excited pulse height spectra were measured, Eu 2% doped one showed the highest light yield of 29,000 ph/n with 1.15 μs decay time. Using the 2 inchφ Czochralski grown one coupled with the position sensitive photomultiplier tube covered by Cd mask with various size (1, 2, 3, and 5 mm) pin holes, thermal neutron imaging was examined. As a result, the spatial resolution turned out to be better than 1 mm.  相似文献   

9.
The Ca0.5% and Ce1%, 3%, 7%, 10% co-doped Gd0.5Y0.5F3 single crystals were grown by the μ-PD method. In the Ca0.5% and Ce3% co-doped sample, Ce3+-perturbed luminescence at 380 nm was observed with 32.4 ns photoluminescence decay time. The energy transfer in the sequence of the regular Ce3+→ (Gd3+)n→ the perturbed Ce3+ sites was evidenced through observation of decay time shortening of the regular Ce3+ and Gd3+ centers and the change between the Gd3+ and Ce3+-perturbed emission intensity. The gamma-ray excited scintillation response of the Ca0.5%, Ce7% co-doped Gd0.5Y0.5F3 sample was investigated with the help of the pulse height spectra and the light yield, energy resolution and non-proportionality was evaluated in the interval of energies of 59.4-1274 keV.  相似文献   

10.
Nd 0.1%, 0.5%, 1% and 3% doped Lu3Al5O12 (Nd:LuAG) single crystals were grown in the nitrogen atmosphere by the micro-pulling down (μ-PD) method. The grown crystals had a single-phase confirmed by powder XRD analysis. In absorption spectra, some weak absorption lines due to Nd3+ 4f-4f transitions were observed and their intensity increased with the increase of Nd concentration. When excited by 241Am α-ray, a broad emission peak due to defects in the host lattice at 320 nm and some sharp lines due to Nd3+ 4f-4f transitions at wavelength longer than 400 nm were observed. The decay time profiles of Nd:LuAG under γ-ray excitation were well approximated by two exponential function of 340-760 ns and 3-5 μs for each sample. By pulse height measurement using 137Cs, Nd 0.5%:LuAG showed the highest light yield of 7600 ± 760 photons/MeV.  相似文献   

11.
Y3−xLuxAl3MgSiO12:Ce3+ phosphors were prepared by aqueous sol-gel technique. Samples with 0.25, 0.5, 0.75 and 1 mol-% of Ce3+ were fabricated and characterized by powder X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, and temperature dependent luminescence to reveal the thermal quenching. Moreover, luminous efficacies (LE), CIE 1931 color points and quantum efficiencies (QE) were calculated and discussed. XRD patterns confirmed the presence of single phase garnet for all samples independent of Ce3+ concentration and Y/Lu ratio. Phosphors showed broad band emission in the range 500-750 nm. The emission maximum shifts from 555 to 585 nm depending on the Ce3+ concentration and Y/Lu ratio. Quantum efficiency of the phosphors decreased with rising Ce3+ concentration and increased with increasing Lu content.  相似文献   

12.
In the search for new scintillator materials, Ce3+ doped chlorides are a promising class of materials, combining a high efficiency and fast response time. Even shorter response times may be achieved by replacing Ce3+ by Pr3+ or Nd3+ as the lifetime of the d-f emission is substantially shorter for these ions. Here we report on the luminescence properties of Ce3+, Pr3+ and Nd3+ in RbCl and investigate the potential as a scintillator material. Under UV excitation Ce3+ shows d-f emission between 325 and 425 nm. The emission originates from multiple (differently charge compensated) Ce3+ sites. The luminescence lifetime varies with wavelength and is ∼40 ns for the longer wavelength emission. For RbCl:Pr3+ three d-f emission band are observed between 250 and 350 nm which can be assigned to transitions from the lowest energy fd state to different 3HJ (J = 4-6) states within the 4f2 configuration of Pr3+. The decay time is ∼17 ns. For the Nd3+ activated sample a weak emission band around 220 nm is observed only at 8 K which may be due to d-f emission. The very short lifetime (4 ns) is faster than the radiative lifetime, indicating that the d-f emission is quenched by relaxation to lower lying 4f3 states or by the process of photoionization. Under VUV excitation at wavelengths below 175 nm (the bandgap of RbCl) the d-f emission is very weak for Ce3+, Pr3+ and Nd3+ doped RbCl and the emission spectra are dominated by defect related emission. This indicates that energy transfer from the host lattice to the fd states is inefficient which prevents application as a scintillator material.  相似文献   

13.
By hydrothermal reactions it was possible to prepare well-crystallized borosilicates of composition La1  x  yLnxLn′yBSiO5 with the trigonal stillwellite structure. Ln = Eu3+ and Tb3+ produce compounds with only weak luminescence. Compounds with Ln = Ce3+ are strong UV phosphors with peak intensity at x = 0.08 and abrupt concentration quenching at x = 0.10. Compounds with Ln = Ce3+ and Ln′ = Tb3+ exhibit effective Ce3+ → Tb3+ coactivation and strong green luminescence. This family of borosilicates appears to be useful phosphor hosts, aside from the necessity of non-traditional synthesis.  相似文献   

14.
The spectroscopic properties of Na3Gd(PO4)2 and Na3Gd(PO4)2:Ce3+ phosphors in the VUV-UV spectral range were investigated. Five excitation bands of Ce3+ ions at Gd3+ sites are observed at wavelengths of 205, 246, 260, 292, and 321 nm. Doublet Ce3+ 5d → 4f emission bands are observed at 341 and 365 nm with a decay constant τ1/e around 26 ns. The X-ray excited luminescence of Na3Gd0.99Ce0.01(PO4)2 at room temperature shows a photon yield of ∼17,000 photons/MeV of absorbed X-ray energy.  相似文献   

15.
Solid solution crystals of Lu1−xScxBO3:Ce3+ (= 0.2, 0.3, 0.5, 0.7) were grown by Czochralski method. These crystals have high optical transmittance within wavelength concerned, except for an absorption shoulder in Lu0.8Sc0.2BO3:1at%Ce3+ crystal from 360 to 530 nm. With the increase of Sc/Lu ratio, the excitation and emission spectra have redshift due to change of Ce3+ crystalline environment and the lifetime gradually increases due to the increase of emission wavelength. Efficient energy transfer from the self-trapped excitons to Ce3+ ions was observed. Lu0.8Sc0.2BO3:1at%Ce3+ crystal, due to high density, short decay time, high scintillation efficiency and non-hygroscopic property, could be a promising scintillator.  相似文献   

16.
17.
Single crystals of 2-amino-5-nitropyridinium-toluenesulfonate (2A5NPT) were grown by the slow cooling method. The unit cell dimensions were determined from single crystal X-ray diffraction studies. The thermal parameters - thermal diffusivity (α), thermal effusivity (e), thermal conductivity (K) and heat capacity (Cp) of 2A5NPT were measured by an improved photopyroelectric technique at room temperature. Single and multiple shot experiments performed on the grown crystals for the second harmonic of pulsed Nd:YAG laser (532 nm) show that it exhibits a high laser damage threshold which is a favorable property for nonlinear optical applications. Dielectric constant and dielectric loss of the grown crystal were evaluated for the frequency range 1 kHz-1 MHz in the temperature region 40-130 °C. Hardness values were measured using Vickers hardness measurement.  相似文献   

18.
Aluminum oxynitride(AlON) phosphors co-doped by Tb3+ and Ce3+ were synthesized by nitridation of the precursor which was co-precipitated from Al(NO3)3 solution and nanosized carbon black at 1750 °C for 2 "hrs" in flowing nitrogen atmosphere. The obtained AlON based powders were composed of polycrystalline spinel typed particles with sizes in the range of 1-3 μm. Under an excitation of 275 nm, it was found that co-doping of Ce3+ could drastically enhance the luminescence of AlON:Tb3+ powder by energy transfer. The product with 0.5 mol% Ce3+ and 0.67 mol% Tb3+ exhibited a strong broad green emission at 540 nm. The critical quenching concentration of Tb3+ in AlON:0.5 mol% Ce3+/xmol% Tb3+ phosphor was determined to be 0.67 mol%. It was supposed that the mechanism of concentration quenching of Tb3+ in AlON:0.5 mol% Ce3+ xmol% Tb3+ phosphor was dipole-dipole interaction.  相似文献   

19.
The undoped and 0.5% Ce3+-doped strontium metaborate SrB2O4 single crystals has been grown successfully by micro-pulling down method with radio frequency (RF) heating system, and scintillation characteristics including optical properties and radiation response were studied for these crystals. The Ce3+-doped SrB2O4 crystal showed absorption band around 240–320 nm, which is corresponding to the 4f-5d transition of Ce3+. Intense emission band at 375 nm due to the Ce3+ 5d–4f transition was observed under 241Am 5.5 MeV α-ray excitation. The scintillation decay time showed fast (50 ns) and slow (1430 ns) components ascribed to the Ce3+ 5d–4f transition and lattice defect in the crystal, respectively. The scintillation light yield of Ce3+-doped SrB2O4 was calculated to be about 1000 ph/n under 252Cf irradiation.  相似文献   

20.
Crystallization behavior of (30−x)K2O-xNa2O-25Nb2O5-45SiO2 (KNNS; x = 0, 5, 10, 20 and 30) (mol%) glasses was clarified and perovskite-type nonlinear optical (K, Na)NbO3 (KNN) crystals were synthesized by using a conventional glass-ceramics method. It was found that Na2O amounts over around x = 10 mol% were necessary to form perovskite-type KNN crystals showing second-harmonic generations. The substitution of K+ and Na+ ions was confirmed from X-ray diffraction (XRD) analysis. A continues-wave of Yb:YVO4 fiber laser (wavelength: 1080 nm) was irradiated onto CuO doped KNNS; x = 10 (Cu-KNNS) surface. The absorption coefficient of this Cu-KNNS glass was determined to be α = 5.0 cm−1. Perovskite-type KNN crystals were patterned in the condition of the laser power of >1.20 W and the laser scanning speed of = 7 μm/s, and their structure was determined by Raman scattering spectra and XRD analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号