首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface-phase ZrO2 on SiO2 (SZrOs) and surface-phase La2O3 on Al2O3 (SLaOs) were prepared with various loadings of ZrO2 and La2O3, characterized and used as supports for preparing Pt/SZrOs and Pt/SLaOs catalysts. CH4/CO2 reforming over the Pt/SZrOs and Pt/SLaOs catalysts was examined and compared with Pt/Al2O3 and Pt/SiO2 catalysts. CO2 or CH4 pulse reaction/adsorption analysis was employed to elucidate the effects of these surface-phase oxides.

The zirconia can be homogeneously dispersed on SiO2 to form a stable surface-phase oxide. The lanthana cannot be spread well on Al2O3, but it forms a stable amorphous oxide with Al2O3. The Pt/SZrOs and Pt/SLaOs catalysts showed higher steady activity than did Pt/SiO2 and Pt/Al2O3 by a factor of three to four. The Pt/SZrOs and Pt/SLaOs catalysts were also much more stable than the Pt/SiO2 and Pt/Al2O3 catalysts for long stream time and for reforming temperatures above 700 °C. These findings were attributed to the activation of CO2 adsorbed on the basic sites of SZrOs and SLaOs.  相似文献   


2.
通过单因素实验探讨了SiO2/Al2O3摩尔比对仿铜金属釉的影响,研制了一种釉面耐磨性较高且呈现仿铜金属效果的生料金属釉。实验结果表明:随着SiO2/Al2O3摩尔比的增加,由于釉中析出的晶体种类和数量不同,从而导致釉面光泽度和色泽不一。当SiO2/Al2O3摩尔比为5.6时,釉中析出了CuMn2O4尖晶石晶体,从而使釉面呈现最佳的仿铜金属光泽,该釉面硬度为894.65Kg/mm2。  相似文献   

3.
以不同温度焙烧的苏州高岭土为原料,采用原位晶化法合成高硅铝比小晶粒NaY分子筛,考察晶种胶添加量、陈化温度、晶化温度和m(高土)∶m(偏土)对晶化过程和产物性质的影响。结果表明,m(高土)∶m(偏土)=1时,在晶种胶添加质量分数15%、陈化温度90℃和晶化温度100℃条件下,以普通高岭土为原料原位合成NaY样品的相对结晶度约为80%,骨架硅铝比(SiO2与Al2O3物质的量比)为6.4,平均粒径约500nm。调整原料中m(高土)∶m(偏土)可以控制原位晶化样品中的分子筛含量。以细化高岭土为原料合成的NaY分子筛(平均约445nm)粒径小于普通高岭土合成的样品。骨架硅铝比高于6.0的原位晶化样品的骨架坍塌温度高于950℃,具有很高的结构稳定性。  相似文献   

4.
The role of vanadium oxide and palladium on the benzene oxidation reaction over Pd/V2O5/Al2O3 catalysts was investigated. The Pd/V2O5/Al2O3 catalysts were more active than V2O5/Al2O3 and Pd/Al2O3 catalysts. The increase of vanadium oxide content decreased the Pd dispersion and increased the benzene conversion. A strong Pd particle size effect on benzene oxidation reaction was observed. Although the catalysts containing high amount of V4+ species were more active, the Pd particle size effect was responsible for the higher activity.  相似文献   

5.
More than 0.22 mmol of isolated VO4 species of V2O5/Al2O3 exhibited the highest evolution of the partial oxidation products (alcohol and ketone) in the oxidation of cyclohexane and cyclopentane. The conversion of cyclohexane and the selectivity of the partial oxidation products were achieved to be 0.49% and 85% over 0.8 g of 3.5 wt.% V2O5/Al2O3, respectively, where the K/A ratio was 6.2. In addition, V2O5/Al2O3 can selectively oxidize various hydrocarbons in the liquid phase by the one-step oxygen atom insertion to CH bond. The order of priority was tertiary carbon > secondary carbon > primary carbon > benzene ring.  相似文献   

6.
Alumina–silica mixed oxide, synthesized by the sol–gel technique, was used as a support for dispersing and stabilizing the active vanadia phase. The catalysts were characterized employing 51V and 1H solid-state MAS NMR, diffuse reflectance FT-IR, BET surface area measurements. The partial oxidation activities of the catalysts were tested using methanol oxidation as a model reaction. 51V solid-state NMR studies on the calcined catalysts showed the peaks corresponding to the presence of both tetrahedral and distorted octahedral vanadia species at low vanadia loadings and with an increase in V2O5 content, the 51V chemical shifts corresponding to amorphous V2O5 like phases were observed. DRIFTS studies of the catalysts indicated the vibrations corresponding tetrahedral vanadia species at low and medium loadings and at high V2O5 contents the vibrations corresponding V=O bonds of V2O5 agglomerates were observed. The V/Al–Si catalysts exhibited high selectivity for the dehydration product dimethyl ether in the methanol partial oxidation studies showing the predominance of the acidic nature of the alumina–silica support over the redox properties of the active vanadia phase.  相似文献   

7.
以自制PW/SiO_2-Al_2O_3为催化剂,研究载体及其负载量对萘异丙基化反应转化率和选择性的影响,并考察反应时间、活化温度和反应温度对催化剂性能的影响。结果表明,以异丙醇和萘[n(异丙醇)∶n(萘)=2]为原料,环己烷为溶剂,在活化温度和反应温度均为250℃及反应时间5 h条件下,磷钨酸(PW)负载质量分数40%时,PW/SiO_2-Al_2O_3负载型催化剂对萘异丙基化反应的催化效果最好,萘转化率87. 97%,DIPN选择性41. 41%,DIPN中β,β-DIPN占比达到59. 82%。  相似文献   

8.
The importance of the hydrodearomatisation (HDA) is increasing together with tightening legislation of fuel quality and exhaust emissions. The present study focuses on hydrogenation (HYD) kinetics of the model aromatic compound naphthalene, found in typical diesel fraction, in n-hexadecane over a NiMo (nickel molybdenum), Ni (nickel) and Ru (ruthenium) supported on trilobe alumina (Al2O3) catalysts. Kinetic reaction expressions based on the mechanistic Langmuir–Hinshelwood (L–H) model were derived and tested by regressing the experimental data that translated the effect of both naphthalene and hydrogen concentration at a constant temperature (523.15 and 573.15 K over the NiMo catalyst and at 373.15 K over the Ni and Ru/Al2O3 catalysts) on the initial reaction rate. The L–H equation, giving an adequate fit to the experimental data with physically meaningful parameters, suggested a competitive adsorption between hydrogen and naphthalene over the presulphided NiMo catalyst and a non-competitive adsorption between these two reactants over the prereduced Ni and Ru/Al2O3 catalysts. In addition, the adsorption constant values indicated that the prereduced Ru catalyst was a much more active catalyst towards naphthalene HYD than the prereduced Ni/Al2O3 or the presulphided NiMo/Al2O3 catalyst.  相似文献   

9.
张媛  张伟  刘志玲  张菊  裴婷 《工业催化》2016,24(2):14-20
乙烯和丙烯作为重要的化工原料,在经济发展中的需求量越来越大。在石油资源越来越匮乏的今天,甲醇制烯烃作为一种可以代替常规石油路线生产低碳烯烃的新工艺受到广泛关注。SAPO-34分子筛因为高甲醇转化率和优良烯烃选择性成为当前甲醇制烯烃工艺催化剂的研究重点。合成SAPO-34分子筛的影响因素有模板剂、合成原料和反应条件等。通过调节分子筛粒径尺寸、酸性、金属改性可以实现分子筛的性能优化。介绍了SAPO-34分子筛催化剂常用的制备方法和一些分子筛催化剂改进的专利。使用一定时间后催化剂由于积炭而失活,再生工艺目前主要采用烧焦再生。2011年,神华煤制烯烃示范工程进入工业化运行,近年陆续有多套甲醇制烯烃装置投产和在建,煤制烯烃正在改变中国聚烯烃市场格局。  相似文献   

10.
Attempts had been made to synthesize Al2O3-2SiO2 nanopowders by sol-gel method with tetraethoxysilane(TEOS) and aluminum nitrate(ANN) as the starting materials.DTS,TEM,SEM and BET were employed to study the effects of process parameters on the size,specific surface area and structure(morphology) of powders.The alkali-activation reactivity of the powders was tested for manufacturing geopolymers and their hydrothermal reactions were performed for fabricating zeolites.The results show that the optimum process parameters and drying method for preparing Al2O3-2SiO2 nanopowders are as follows:the molar ratio of water and ethanol to TEOS are 0:1 and 12:1 respectively at synthetic temperature of 50 ℃ and the drying method is azeotropic distillation with microwave drying.The average particle diameters of the powders were about 70 nm and the largest BET specific surface area was up to 669 m2·g·1.The compressive strength of the geopolymer and the calcium exchange capacity(by CaCO3) of NaA zeolite prepared with the powders reached to 29 MPa and 366 mg·g·1 respectively.  相似文献   

11.
Dispersing La2O3 on δ- or γ-Al2O3 significantly enhances the rate of NO reduction by CH4 in 1% O2, compared to unsupported La2O3. Typically, no bend-over in activity occurs between 500° and 700°C, and the rate at 700°C is 60% higher than that with a Co/ZSM-5 catalyst. The final activity was dependent upon the La2O3 precursor used, the pretreatment, and the La2O3 loading. The most active family of catalysts consisted of La2O3 on γ-Al2O3 prepared with lanthanum acetate and calcined at 750°C for 10 h. A maximum in rate (mol/s/g) and specific activity (mol/s/m2) occurred between the addition of one and two theoretical monolayers of La2O3 on the γ-Al2O3 surface. The best catalyst, 40% La2O3/γ-Al2O3, had a turnover frequency at 700°C of 0.05 s−1, based on NO chemisorption at 25°C, which was 15 times higher than that for Co/ZSM-5. These La2O3/Al2O3 catalysts exhibited stable activity under high conversion conditions as well as high CH4 selectivity (CH4 + NO vs. CH4 + O2). The addition of Sr to a 20% La2O3/γ-Al2O3 sample increased activity, and a maximum rate enhancement of 45% was obtained at a SrO loading of 5%. In contrast, addition of SO=4 to the latter Sr-promoted La2O3/Al2O3 catalyst decreased activity although sulfate increased the activity of Sr-promoted La2O3. Dispersing La2O3 on SiO2 produced catalysts with extremely low specific activities, and rates were even lower than with pure La2O3. This is presumably due to water sensitivity and silicate formation. The La2O3/Al2O3 catalysts are anticipated to show sufficient hydrothermal stability to allow their use in certain high-temperature applications.  相似文献   

12.
由丙烷直接催化脱氢制取丙烯已经成为增产丙烯的重要手段之一。以水热法制备Al_2O_3载体,采用等体积浸渍法制备不同PtSn负载量的PtSn/Al_2O_3催化剂。通过XRD、N2-吸附、拉曼光谱和H2-TPR等对其进行表征,并考察不同PtSn负载量对催化剂催化丙烷脱氢性能的影响。结果表明,在制备的催化剂中,Pt1.5Sn3/Al_2O_3具有最高的催化丙烷脱氢活性和稳定性,丙烷初始转化率高达55.6%,丙烯选择性98.1%。反应330 min后,丙烷转化率仅降约10%,选择性保持不变。  相似文献   

13.
Al2O3–SiO2 mixed oxide has been investigated as a support for hydrotreating catalyst with variation of its composition [Si/(Si + Al) = 0.06, 0.12, 0.31, 0.56, 0.78] and its interaction with the surface active metals (NiMo). The composition of support and surface species (NiMo) of catalysts were characterized by specific surface area, atomic absorption, SEM-EDX, XRD, temperature programmed reduction (TPR), Raman analysis, scanning electron microscopy (STEM) and transmission electron microscopy (TEM). Incorporation of SiO2 in Al2O3 promotes a weak interaction between the active phases and particularly catalyst that predominated with SiO2 content. The oxide and sulfided catalysts characterization indicated that the effect of support is responsible to form different catalytic sites. Crystallization of MoO3 phases and a relatively longer crystal of MoS2 in the sulfided catalyst were attributed to an increasing SiO2 content in the support. The catalytic behavior of the NiMo supported catalysts is explained in terms of structural changes on the surface due to the support and active metal interactions. The activity of the different catalysts evaluated in the thiophene hydrodesulfurization reaction was higher for the catalyst having lower SiO2 content in the support.  相似文献   

14.
The hydroisomerization and hydrocracking of n-hexadecane, n-octacosane and n-hexatriacontane on a 0.3% platinum/amorphous silica–alumina (MSA/E) catalyst was investigated in a stirred microautoclave at 345, 360 and 380°C and between 2 and 13.1 MPa hydrogen pressure. For each n-paraffin, the reaction pathway and the kinetic parameters were determined. The results were used to elucidate the effect of chain length and operating conditions on isomerization and cracking selectivity. The conversion of the n-paraffins lead to the formation of a mixture of the respective isomers, as the main product, together with cracking products. At every temperature, the iso-alkane/n-alkane ratio of cracking products increased considerably with increasing conversion degree. At the same conversion level, higher reaction temperatures lead to cracking products characterized by a lower iso-alkane/n-alkane ratio. The conversion rate constants showed a considerable increase between n-C16 and n-C28, whereas a slight decrease between n-C28 and n-C36 was observed. The hydroisomerization selectivities showed a decrease as a function of chain length and with increasing conversion levels. The increase in reaction temperature leads to a small decrease in the isomerization selectivities only at low-medium conversion degrees and at the highest temperature investigated, while the effect of this parameter on the maximum yields achievable in iso-C16, iso-C28 and iso-C36 was negligible. The results indicate that the conversion of the n-paraffins follows a first-order kinetic in hydrocarbon while the order in hydrogen pressure was −1.1 ± 0.21 for n-C16 and −0.66 ± 0.15 for n-C28. Furthermore, an increase in hydroisomerization selectivity at higher hydrogen pressure for n-C28 conversion was observed.  相似文献   

15.
An In2O3/Al2O3 catalyst shows high activity for the selective catalytic reduction of NO with propene in the presence of oxygen. The presence of SO2 in feed gas suppressed the catalytic activity dramatically at high temperatures; however it was enhanced in the low temperature range of 473–573 K. In TPD and FT-IR studies, the formation of sulfate species on the surface of the catalyst caused an inhibition of NOX adsorption sites, and the absorbance ability of NO was suppressed by the presence of SO2, and the amount of ad-NO3 species decreased obviously. This leads to a decrease of catalytic activity at higher temperatures. However, addition of SO2 enhanced the formation of carboxylate and formate species, which can explain the promotional effect of SO2 at low temperature, because active C3H6 (partially oxidized C3H6) is crucial at low temperature.  相似文献   

16.
Ethanol steam reforming was studied over Ni/Al2O3 catalysts. The effect of support (- and γ-Al2O3), metal loading and a comparison between conventional H2 reduction with an activation method employing a CH4/O2 mixture was investigated. The properties of catalysts were studied by N2 physisorption, X-ray diffraction (XRD) and temperature programmed reduction (TPR). After activity tests, the catalysts were analyzed by scanning electron microscopy (SEM) and thermogravimetric analysis (TG/DTA). Ni supported on γ-Al2O3 was more active for H2 production than the catalyst supported on -Al2O3. Metal loading did not affect the catalytic performance. The alternative activation method with CH4/O2 mixture affected differently the activity and stability of the Ni/γ-Al2O3 and the Ni/-Al2O3 catalyst. This activation method increased significantly the stability of Ni/-Al2O3 compared to H2 reduction. SEM and TG/DTA analysis indicate the formation of filamentous carbon during the CH4/O2 activation step, which is associated with the increasing catalyst activity and stability. The effect of temperature on the type of carbon formed was investigated; indicating that filamentous coke increased activity while encapsulating coke promoted deactivation. A discussion about carbon formation and the influence on the activity is presented.  相似文献   

17.
18.
NiMo/(X)SiO2–Al2O3 catalysts were synthesized with various SiO2 contents (X = 0, 10, 25 and 50 wt%) using the pH-swing method. In order to find the optimum SiO2 content, the catalysts were evaluated in the hydrodesulfurization of 4,6-DMDBT, hydrogenation of naphthalene and hydrodenitrogenation of carbazole. Kinetic parameters of Langmuir–Hinshelwood type equations for all the reaction systems were estimated. FTIR analysis of CO adsorption for the sulfided catalysts shows that the amount of coordinatively unsaturated Mo sites promoted by nickel (CUS-NiMoS) follows the order NiMo/10ASA > NiMo/25ASA > NiMo/0ASA. This tendency agrees with the results obtained in catalytic activity.  相似文献   

19.
Ni/Al_2O_3催化剂是甲烷二氧化碳重整反应制取合成气研究最多、最具应用潜力的一种催化剂。通过对催化剂进行CO_2-TPD研究,考察还原态Ni/Al_2O_3催化剂的CO_2脱附特性。结果表明,浸渍法制备的Ni/Al_2O_3催化剂CO_2脱附曲线呈现双峰,分别在(60~65)℃和(350~380)℃出现高低温两个活性位;高温CO_2吸附量为3.0 cm~3·g~(-1),低温CO_2吸附量为24.0 cm~3·g~(-1)。催化剂的CO_2吸附量与其Ni含量无关。考察选用不同载体的CO_2脱附行为,发现以Al_2O_3为载体的催化剂CO_2吸附量是MgO和SiO_2为载体催化剂的2~4倍,以TiO_2为载体的催化剂几乎不吸附CO_2。  相似文献   

20.
Micro-channel plates with dimension of 1 mm × 0.3 mm × 48 mm were prepared by chemical etching of stainless steel plates followed by wash coating of CeO2 and Al2O3 on the channels. After coating the support on the plate, Pt, Co, and Cu were added to the plate by incipient wetness method. Reaction experiments of a single reactor showed that the micro-channel reactor coated with CuO/CeO2 catalyst was highly selective for CO oxidation while the one coated with Pt-Co/Al2O3 catalyst was highly active for CO oxidation. The 7-layered reactors coated with two different catalysts were prepared by laser welding and the performances of each reactor were tested in large scale of PROX conditions. The multi-layered reactor coated with Pt-Co/Al2O3 catalyst was highly active for PROX and the outlet concentration of CO gradually increased with the O2/CO ratio due to the oxidation of H2 which maintained the reactor temperature. The multi-layered reactor coated with CuO/CeO2 showed lower catalytic activity than that coated with Pt catalyst, but its selectivity was not changed with the increase of O2/CO ratios due to the high selectivity. In order to combine advantages (high activity and high selectivity) of the two individual catalysts (Pt-Co/Al2O3, CuO/CeO2), a serial reactor was prepared by connecting the two multi-layered micro-channel reactors with different catalysts. The prepared serial reactor exhibited excellent performance for PROX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号