首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The feasibility of a direct internal reforming (DIR) solid oxide fuel cell (SOFC) running on wet palm‐biodiesel fuel (BDF) was demonstrated. Simultaneous production of H2‐rich syngas and electricity from BDF could be achieved. A power density of 0.32 W cm?2 was obtained at 0.4 A cm?2 and 800 °C under steam to carbon ratio of 3.5. Subsequent durability testing revealed that a DIR‐SOFC running on wet palm‐BDF exhibited a stable voltage of around 0.8 V at 0.2 A cm?2 for more than 1 month with a degradation rate of approximately 15 % / 1000 h. The main cause of the degradation was an increase in the ohmic resistance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This study presents a two-dimensional mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) stack which is based on the reforming reaction kinetics, electrochemical model and principles of mass and heat transfer. To stimulate the model and investigate the steady and dynamic performances of the DIR-SOFC stack, we employ a computational approach and several cases are used including standard conditions, and step changes in fuel flow rate, air flow rate and stack voltage. The temperature distribution, current density distribution, gas species molar fraction distributions and dynamic simulation for a cross-flow DIR-SOFC are presented and discussed. The results show that the dynamic responses are different at each point in the stack. The temperature gradients as well as the current density gradients are large in the stack, which should be considered when designing a stack. Further, a moderate increase in the fuel flow rate improves the performances of the stack. A decrease in the air flow rate can raise the stack temperature and increase fuel and oxygen utilizations. An increased output voltage reduces the current density and gas utilizations, resulting in a decrease in the temperature.  相似文献   

3.
A three-dimensional mathematical thermo-fluid model coupling the electrochemical kinetics with fluid dynamics was developed to simulate the heat and mass transfer in planar anode-supported solid oxide fuel cell (SOFC). The internal reforming reactions and electrochemical reactions of carbon monoxide and hydrogen in the porous anode layer were analyzed. The temperature, species mole fraction, current density, overpotential loss and other performance parameters of the single cell unit were obtained by a commercial CFD code (Fluent) and external sub-routine. Results show that the current density produced by electrochemical reactions of carbon monoxide cannot be ignored, the cathode overpotential loss is the biggest one among the three overpotential losses, and that the proper decrease of the operating voltage leads to the increase of the current density, PEN structure temperature, fuel utilization factor, fuel efficiency and power output of the SOFC.  相似文献   

4.
Methane is regarded as one of the ideal fuels for solid oxide fuel cells (SOFCs) due to its huge reserves and transportation properties. In this study, a 3D numerical model coupling with chemical reaction, electrochemical reaction, mass transfer, charge transfer, and heat transfer is developed to understand the heat and mass transfer processes of methane steam direct internal reforming based on double-sided cathodes (DSC) SOFC. After the model verification, the parametric simulations are performed to study the effects of operating voltage, inlet temperature, and steam to carbon (S/C) ratio on the performance of a DSC. It is found that the non-uniform distribution of flow rate among channels results in the non-uniform distribution of each physical field. Increasing the inlet temperature significantly enhances the performance of DSC, however, when the temperature is above 1073 K, the concentration loss and the temperature gradient of DSC increase, which is not conducive to the long-term operation of the DSC. In addition, we revealed the effect of the S/C ratios on the heat and mass transfer process. This study provides an insight into the heat and mass transfer process of SOFC with a mixture of steam and methane and operating conditions for enhancing the performance.  相似文献   

5.
Direct internal reforming of methanol is applied as fuel for a Ni-YSZ anode-supported solid oxide fuel cell with a flat tube based on double-sided cathodes. It achieves a power density (PD) of 0.25 W/cm2 at 0.8 V, reaching about 90% of that is fueled by H2. And the cell has been operated for more than 120 h by the direct internal reforming of methanol. The durability and apparent advantage for using humidified methanol may lead to widespread applications by direct internal reforming method for this new designed SOFC in the future.  相似文献   

6.
In the present study a two‐dimensional model of a tubular solid oxide fuel cell operating in a stack is presented. The model analyzes electrochemistry, momentum, heat and mass transfers inside the cell. Internal steam reforming of the reformed natural gas is considered for hydrogen production and Gibbs energy minimization method is used to calculate the fuel equilibrium species concentrations. The conservation equations for energy, mass, momentum and voltage are solved simultaneously using appropriate numerical techniques. The heat radiation between the preheater and cathode surface is incorporated into the model and local heat transfer coefficients are determined throughout the anode and cathode channels. The developed model has been compared with the experimental and numerical data available in literature. The model is used to study the effect of various operating parameters such as excess air, operating pressure and air inlet temperature and the results are discussed in detail. The results show that a more uniform temperature distribution can be achieved along the cell at higher air‐flow rates and operating pressures and the cell output voltage is enhanced. It is expected that the proposed model can be used as a design tool for SOFC stack in practical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The temperature distribution of an operating planar solid oxide fuel cell (SOFC) is experimentally investigated under direct internal reforming conditions. An in situ measurement is conducted using a cell holder and an infrared (IR) camera. The effects of the gas flow configuration, exothermic power generation reaction, and endothermic steam–methane reforming reaction are examined at a furnace temperature of 770 °C. The fuel flow and airflow are set to a coflow or counterflow configuration. The heat generation and absorption by the reactions are varied by tuning the average current density and the concentration of methane in the supplied fuel. The maximum value of the local temperature gradient along the cell tends to increase with increasing internal reforming ratio, regardless of the gas flow configuration. From the view point of a small temperature gradient, the counterflow configuration clearly shows better characteristics than that of the coflow, regardless of the internal reforming ratio.  相似文献   

8.
The effects of direct internal reforming in a fuel cell solid oxide (SOFC) on thermal fields are studied by mathematical modeling. This study presents the thermal fields of a standard fuel cell (Ni-YSZ/YSZ/LSM) anode supported. This study is also made in the perpendicular plane at the flow of gases. The fuel cell is powered by air and fuel, CH4, H2, CO2, CO and H2O hence the birth of the phenomenon of direct internal reforming (DIR-SOFC). It is based on reforming chemical reactions, steam reforming reaction and water–gas shift reaction. The main purpose of this work is the visualization of temperature fields under the influence of global chemical reactions and the confirmation of the thermal behavior of this chemical reaction. The thermal fields are obtained by a computer program (FORTRAN).  相似文献   

9.
10.
A numerical model for an anode-supported intermediate-temperature direct-internal-reforming planar solid oxide fuel cell (SOFC) was developed. In this model, the volume-averaging method is applied to the flow passages in the SOFC by assuming that a porous material is inserted in the passages as a current collector. This treatment reduces the computational time and cost by avoiding a full three-dimensional simulation while maintaining the ability to solve the flow and pressure fields in the streamwise and spanwise directions. In this model, quasi-three-dimensional multicomponent gas flow fields, the temperature field, and the electric potential/current fields were simultaneously solved. The steam-reforming reaction using methane, the water-gas shift reaction, and the electrochemical reactions of hydrogen and carbon monoxide were taken into account. It was found that the endothermic steam-reforming reaction led to a reduction in the local temperature near the inlet and limited the electrochemical reaction rates therein. Computational results indicated that the local temperature and current density distributions can be controlled by tuning the pre-reforming rate. It was also found that a small amount of heat loss from the sidewall can cause significant nonuniformity in the flow and thermal fields in the spanwise direction.  相似文献   

11.
A 2‐D steady‐state mathematical model of a tubular solid oxide fuel cell with indirect internal reforming (IIR‐SOFC) has been developed to examine the chemical and electrochemical processes and the effect of different operating parameters on the cell performance. The conservation equations for energy, mass, momentum as well as the electrochemical equations are solved simultaneously employing numerical techniques. A co‐flow configuration is considered for gas streams in the air and fuel channels. The heat radiation between the preheater and reformer surface is incorporated into the model and local heat transfer coefficients are determined throughout the channels. The model predictions have been compared with the data available in the literature. The model was used to study the effect of various operating conditions on the cell performance. Numerical results indicate that as the cell operating pressure increases, the reforming reaction extends to a larger portion of the cell and the maximum temperature move away from the cell inlet. As a result, a more uniform temperature prevails in the solid structure which reduces thermal stresses. Also, at higher excess air, the rate of heat transfer to the air stream is augmented and the average cell temperature is decreased. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A reduced 1D dynamic model of a planar direct internal reforming SOFC (DIR-SOFC) is presented in this paper for system research by introducing two simplifications. The two simplification strategies employed are called Integration and Average, respectively. The present model is evaluated with a detailed 1D SOFC model, which does not introduce the two simplifications, and a lumped parameter (i.e., 0D) SOFC model. Results show that under the operating conditions investigated the accuracy of the reduced model is not significantly compromised by the two simplifications in prediction of the outlet gas flow rates and molar fractions, the outlet temperatures, and the cell voltage, while its computational time is significantly decreased by them. Moreover, it is quite simple in form. Therefore, the reduced SOFC model is attractive for system research. Compared with the lumped model, the reduced SOFC model is an improvement with regard to accuracy because it takes into account the spatially distributed nature of SOFCs to a certain extent. The discretized node number for solving the reduced model can be taken as an adjustable parameter in modeling, and is determined according to specific modeling requirements.  相似文献   

13.
Solid oxide fuel cells (SOFCs) with direct internal reforming (DIR) provide a promising method to realize clean and efficient utilization of hydrocarbon fuels. Thse endothermic reforming reactions occur simultaneously with exothermic electrochemical reactions at the anode, making thermal neutral state achievable inside a fuel cell, providing reference to the thermal management. In this study, a calculation model combining experimental data and thermodynamic results was established, validating the possibility of achieving thermal neutral state in DIR-SOFCs. In the process of modeling, the electrochemical and thermodynamic characteristics in direct internal steam and dry reforming were elaborately compared, contributing to a more scientific understanding of anode reaction mechanism. Detailed experimental investigation was carried out to determine the influence of H2O/CO2 on the electrochemical properties of DIR-SOFCs, based on which the optimum steam-carbon ratio (S/C) and CO2 to CH4 ratios were obtained. Besides, analysis of distribution of relaxation times (DRT) combined with elementary reactions in CH4H2O and CH4CO2 atmospheres were proposed to distinguish different physical and chemical processes within anodes. The results of this study can be conducive to a more precise understanding of reaction mechanism on SOFC anodes and meaningful for practical application of DIR-SOFCs.  相似文献   

14.
In this paper, a transient heat transfer model to simulate the heat-up and start-up periods of co- and counter-flow direct internal reforming solid oxide fuel cells is developed and presented. In this comprehensive model, all the heat transfer mechanisms, i.e. conduction, convection, and radiation, and all the polarization nodes, i.e. ohmic, activation, and concentration, are considered. The heat transfer model is validated using the results of a benchmark test and two numerical studies obtained from the literature. After validating the model, the heat-up, start-up, and steady-state behaviors of the cell are investigated. In addition, the first principal thermal stresses are calculated to find the probability of failure of the cell during its operation. The results of the present model are in good agreement with the literature data. It is also shown for the given input data that counter-flow case yields a higher average current density and power density, but a lower electrical efficiency of the cell. For the temperature controlled heat-up and start-up strategy, the maximum probability of failure during the operation of the cell is found to be 0.068% and 0.078% for co- and counter-flow configurations, respectively.  相似文献   

15.
In this paper a direct internal reforming solid oxide fuel cell (DIR-SOFC) is modeled thermodynamically from the energy point of view. Syngas produced from a gasification process is selected as a fuel for the SOFC. The modeling consists of several steps. First, equilibrium gas composition at the fuel channel exit is derived in terms mass flow rate of fuel inlet, fuel utilization ratio, recirculation ratio and extents of steam reforming and water–gas shift reaction. Second, air utilization ratio is determined according to the cooling necessity of the cell. Finally, terminal voltage, power output and electrical efficiency of the cell are calculated. Then, the model is validated with experimental data taken from the literature. The methodology proposed is applied to an intermediate temperature, anode-supported planar SOFC operating with a typical gas produced from a pyrolysis process. For parametric analysis, the effects of recirculation ratio and fuel utilization ratio are investigated. The results show that recirculation ratio does not have a significant effect for low current density conditions. At higher current densities, increasing the recirculation ratio decreases the power output and electrical efficiency of the cell. The results also show that the selection of the fuel utilization ratio is very critical. High fuel utilization ratio conditions result in low power output and air utilization ratio but higher electrical efficiency of the cell.  相似文献   

16.
Direct carbon solid oxide fuel cell (DC‐SOFC) is a promising technology for electricity generation from biomass with high conversion efficiency and low pollution. Biochar derived from wheat straw is utilized as the fuel of a DC‐SOFC, with cermet of silver and gadolinium‐doped ceria as the material of both cathode and anode and yttrium stabilized zirconia as electrolyte. The output performance of a DC‐SOFC operated on pure wheat straw is 197 mW cm?2 at 800°C and increases to 258 mW cm?2 when 5% of Ca, as a catalyst of the Boudouard reaction, is loaded on the wheat straw char. Higher power and fuel conversion utilization are achieved by using Ca as the Boudouard reaction catalyst. X‐ray diffraction, scanning electron microscopy, energy‐dispersive spectrometer, and programmed‐temperature gravimetric experiment are applied to characterize the leaf char. It turns out that the wheat straw char is with porous structure and composed of C, K, Mg, Cl, Fe, and Ca elements. The effects of the Ca catalyst on the Boudouard reaction, the performance of the DC‐SOFCs operated on the wheat straw char, and the economic advantages of the wheat straw char are demonstrated and analyzed in detail.  相似文献   

17.
A flexible paper-structured catalyst (PSC) that can be applied to the anode of a solid oxide fuel cell (SOFC) was examined for its potential to enable direct internal reforming (DIR) operation. The catalytic activity of three types of Ni-loaded PSCs: (a) without the dispersion of support oxide particles in the fiber network (PSC-A), (b) with the dispersion of (Mg,Al)O derived from hydrotalcite (PSCB), and (c) with the dispersion of (Ce,Zr)O2-δ (PSCC), for dry reforming of CH4 was evaluated at operating temperatures of 650–800 °C. Among the PSCs, PSC-C exhibited the highest CH4 conversion with the lowest degradation rate. The electrochemical performance of an electrolyte-supported cell (ESC) was evaluated under the flow of simulated biogas at 750 °C for cases without and with the PSCs on the anode. The application of the PSCs improved the cell performance. In particular, PSC-C had a remarkably positive effect on stabilizing DIRSOFC operation fueled by biogas.  相似文献   

18.
A utilized regenerative solid oxide fuel cell (URSOFC) provides the dual function of performing energy storage and power generation, all in one unit. When functioning as an energy storage device, the URSOFC acts like a solid oxide electrolyzer cell (SOEC) in water electrolysis mode; whereby the electric energy is stored as (electrolyzied) hydrogen and oxygen gases. While hydrogen is useful as a transportation fuel and in other industrial applications, the URSOFC also acts as a solid oxide fuel cell (SOFC) in power generation mode to produce electricity when needed. The URSOFC would be a competitive technology in the upcoming hydrogen economy on the basis of its low cost, simple structure, and high efficiency. This paper reports on the design and manufacturing of its anode support cell using commercially available materials. Also reported are the resulting performance, both in electrolysis and fuel cell modes, as a function of its operating parameters such as temperature and current density. We found that the URSOFC performance improved with increasing temperature and its fuel cell mode had a better performance than its electrolysis mode due to a limited humidity inlet causing concentration polarization. In addition, there were great improvements in performance for both the SOFC and SOEC modes after the first test and could be attributed to an increase in porosity within the oxygen electrode, which was beneficial for the oxygen reaction.  相似文献   

19.
Mathematical models of an indirect internal reforming solid oxide fuel cell (IIR-SOFC) fed by four different primary fuels, i.e., methane, biogas, methanol and ethanol, are developed based on steady-state, heterogeneous, two-dimensional and tubular-design SOFC models. The effect of fuel type on the thermal coupling between internal endothermic reforming with exothermic electrochemical reactions and system performance are determined. The simulation reveals that an IIR-SOFC fuelled by methanol provides the smoothest temperature gradient with high electrochemical efficiency. Furthermore, the content of CO2 in biogas plays an important role on system performance since electrical efficiency is improved by the removal of some CO2 from biogas but a larger temperature gradient is expected.Sensitivity analysis of three parameters, namely, a operating pressure, inlet steam to carbon (S:C) ratio and flow direction is then performed. By increasing the operating pressure up to 10 bar, the system efficiency increases and the temperature gradient can be minimized. The use of a high inlet S:C ratio reduces the cooling spot at the entrance of reformer channel but the electrical efficiency is considerably decreased. An IIR-SOFC with a counter-flow pattern (as based case) is compared with that with co-flow pattern (co-flow of air and fuel streams through fuel cell). The IIR-SOFC with co-flow pattern provides higher voltage and a smoother temperature gradient along the system due to superior matching between heat supplied from electrochemical reaction and heat required for steam reforming reaction; thus it is expected to be a better option for practical applications.  相似文献   

20.
For seal-less type solid oxide fuel cells, its power generation characteristics and distribution of the gas composition depend on not only the electrochemical reaction, but also complex kinetics and transport phenomena, because the internal reforming reaction and the water-gas shift reaction take place together with reverse diffusion of the ambient gas from the surroundings of the cell. The purpose of this paper is to theoretically explain the experimental results of the anodic concentration profile of gaseous species previously reported in a practical seal-less disk-type cell which used pre-reforming methane with steam as a fuel. A numerical model that takes into account the transport phenomena of the gaseous species and the internal reforming reaction with the water-gas shift reaction together with the assumption of the cell outlet boundary condition was constructed to numerically analyse the gas composition distribution and power generation characteristics. Numerical analyses by the model were conducted for the several cases reported as the experiment. The calculated results in the anode gas concentration profile and in the voltage–current characteristics show good agreement with the experimental data in every case, and then the validity of the simulation model was verified. Therefore, the model is useful for a seal-less disk-type cell which is operated by a fuel including non-reformed methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号