首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
基于南京电子器件研究所0.25μm GaN HEMT工艺平台,设计了一款0.3~2.0GHz 100 W GaN超宽带功率放大器。GaN HEMT器件的射频参数由负载牵引系统测定,包括最大功率匹配阻抗和最大效率匹配阻抗。放大器用同轴巴伦结构实现超宽带匹配,用高介电常数介质板材制作匹配电路,实现放大器的小型化。放大器偏置电压28V,偏置电流0.5A。测试结果显示,在0.3~2GHz带宽内,放大器小信号增益平坦度小于±1.3dB。典型输出功率大于100 W,最小输出功率90 W,饱和功率增益大于9dB,功率平坦度小于±1.2dB,漏极效率大于50%。  相似文献   

2.
阐述了基于GaN HEMT的超宽带功率放大器的设计与实现方法。采用低通L-C匹配网络消除虚部阻抗,并利用多节λ/4阻抗变换器实现宽带实阻抗到目标阻抗50Ω的匹配。测试结果表明,功放在32V漏电压、1ms周期、10%占空比及0.8~4.2 GHz频带内输出功率大于47dBm(50.1 W),最高输出功率为48.9dBm(77.6 W),带内饱和功率增益大于9dB,最大漏极效率为64%。实验测试结果与设计仿真结果符合良好,从而验证了设计方法的正确性。  相似文献   

3.
基于GaN高电子迁移率晶体管(HEMT)研制了一款X波段宽带内匹配大功率放大器。输入匹配电路采用高集成的GaAs集成无源元件(IPD)技术,在有限空间内实现宽带匹配。输出匹配电路采用L-C-L匹配网络及三节阻抗变换线,实现四胞匹配合成。该放大器封装在采用铜-钼铜-铜热沉的金属陶瓷管壳内,尺寸仅为24 mm×17.4 mm×5 mm。测试结果显示,在36 V漏极电压下,8.5~10.5 GHz频带内饱和输出功率大于200 W,功率附加效率≥38%,功率增益平坦度小于0.8 dB。该功率放大器具有广阔的工程应用前景。  相似文献   

4.
主要研究第三代半导体AlGaN/GaN功率管内匹配问题.采用8个2.5 mm GaN功率芯片设计、合成以及内匹配电路的测试,在漏极电压40 V,脉冲占空比10%,脉宽100μs的条件下进行功率匹配,实现了GaN功率HEMT在X波段8 GHz 140 W功率输出的内匹配电路,并使整个电路的输入、输出电路阻抗提升至50 Ω...  相似文献   

5.
采用内匹配技术和平面功率合成相结合的设计方法,设计并实现了一款S波段功率放大器。在设计过程中,先通过预匹配电路将功率芯片的阻抗适当提高,进而利用Wilkinson功分器进行功率合成。该放大器基于中国电子科技集团公司第十三研究所自主研制的GaN HEMT管芯芯片。通过优化设计该放大器在25%的相对带宽、漏源电压28 V、脉宽8 ms和占空比50%的工作条件下,实现了输出峰值功率P out大于70 W,功率附加效率ηPAE大于54%,充分显示了GaN功率器件宽带、高效和高功率的工作性能,具有广阔的工程应用前景。  相似文献   

6.
采用内匹配技术和平面功率合成相结合的设计方法,设计并实现了一款S波段功率放大器。在设计过程中,先通过预匹配电路将功率芯片的阻抗适当提高,进而利用Wilkinson功分器进行功率合成。该放大器基于中国电子科技集团公司第十三研究所自主研制的GaN HEMT管芯芯片。通过优化设计该放大器在25%的相对带宽、漏源电压28 V、脉宽8 ms和占空比50%的工作条件下,实现了输出峰值功率P out大于70 W,功率附加效率ηPAE大于54%,充分显示了GaN功率器件宽带、高效和高功率的工作性能,具有广阔的工程应用前景。  相似文献   

7.
基于星载高可靠性的应用背景,采用0.20μm GaN HEMT工艺研制了一款12 V工作电压的Ku频段功率放大器芯片。利用电热结合的分析方法,确定了管芯结构及工作电压。基于Load-pull测试获得GaN HEMT管芯的最佳输出功率和最佳效率阻抗,设计了一种带谐波匹配的高效率输出匹配电路,并通过引入有耗匹配,研制出了低压稳定的级间匹配电路。芯片面积为2.8 mm×2.6 mm,管芯漏极动态电压仿真峰值低于30 V,实测结温小于80℃,满足宇航Ⅰ级降额要求。功率放大器在17.5~18.0 GHz、漏压12 V(连续波)条件下,典型饱和输出功率2.5 W,附加效率38%,功率增益大于20 dB,线性增益大于27 dB,满足星载高效率要求。  相似文献   

8.
刘如青  张力江  魏碧华  何健 《半导体技术》2021,46(7):521-525,564
基于GaNHEMT工艺,研制了一款W波段功率放大器MMIC.利用Lange耦合器将3个饱和输出功率大于1 W的单元电路进行三路片上功率合成来实现该功率放大器MMIC.该芯片的制作采用了 0.1 μm T型栅GaN HEMT技术,衬底为50 μm厚的SiC.芯片为三级级联拓扑结构,采用高低阻抗传输线、介质电容等进行匹配和偏置电路设计,实现低损耗输出,芯片尺寸为3.37 mm×3.53 mm×0.05 mm.测试结果表明,在漏源工作电压15 V、88~92 GHz频率范围内,该MMIC的线性增益大于15 dB,饱和输出功率大于3W.该MMIC具有功率大、输入输出回波损耗小及应用范围广的优势.  相似文献   

9.
Ku波段60W AlGaN/GaN功率管   总被引:1,自引:0,他引:1  
针对Ku波段60W氮化镓内匹配功率管,开展了内匹配电路的设计、合成以及内匹配电路的测试等研究工作,实现了GaN功率HEMT在Ku波段60W输出功率的内匹配电路,并使整个电路的输入、输出电路阻抗提升至50Ω。该功率管采用南京电子器件研究所研制的两个10.8mm栅宽管芯进行合成,最终研制的GaN Ku波段内匹配功率管在28V漏电压、1ms周期、10%占空比及14.0~14.5GHz频带内输出功率大于60W,最高功率输出66W,带内功率增益大于6dB,最大功率附加效率33.1%,充分显示了GaN功率器件在Ku波段应用的性能优势。  相似文献   

10.
基于SiC衬底0.25μm GaN HEMT工艺,设计实现了一款C波段、高效率和高线性的单片微波集成电路(MMIC)功率放大器。通过优化电路匹配结构,选择合适的有源器件和恰当的直流偏置条件,实现低视频漏极阻抗;利用后级增益压缩和前级增益扩张对消等手段,实现高功率附加效率和好的线性指标。功率放大器芯片尺寸为2.35 mm×1.40 mm。芯片测试结果表明,在3.7~4.2 GHz频率范围内,漏极电压28 V、末级栅极电压-2.2 V、前级栅极电压-1.8 V和连续波条件下,该功率放大器的小信号增益大于25 dB,大信号增益大于20 dB,饱和输出功率大于39 dBm,在输出功率回退至32 dBm时,功率附加效率大于30%,三阶交调失真小于-37 dBc。  相似文献   

11.
报道了一款采用0.25μm GaN HEMT工艺研制的1~8 GHz超宽带分布式功率放大器芯片。通过在芯片的输出端设计超宽带巴伦结构,来实现负载阻抗变换,以提高分布式电路的输出功率和效率特性。为了提高电路的增益,设计了一种两级非均匀式的电路拓扑结构。该芯片在1~8 GHz频率范围内,漏压28 V连续波条件下,线性增益大于25.8 dB,功率增益大于23.2 dB,典型饱和输出功率为10 W,功率附加效率大于28.8%。芯片面积为3.5 mm×3.3 mm。  相似文献   

12.
1~4GHz 80W GaN超宽带功率放大器   总被引:1,自引:0,他引:1       下载免费PDF全文
杨文琪  钟世昌  李宇超 《电子学报》2019,47(8):1803-1808
基于南京电子器件研究所0.25μmGaN HEMT工艺平台,设计了一款工作频率为1~4GHz,连续波输出功率大于80W的超宽带功率放大器.放大器采用低通L-C匹配网络实现管芯输入输出阻抗到实阻抗的变换;并利用切比雪夫变换器结构实现超宽带匹配;以单路输入输出端口匹配到100Ω后,两路直接电路合成到50Ω的方法实现了大功率超宽带功放的功率合成.放大器偏置电压32V,静态电流0.4A.测试结果显示,在1~4GHz带宽内,放大器连续波输出功率大于49.05dBm (80.3W),最高输出功率为50.6dBm (114.8W),饱和功率增益大于9dB,功率平坦度小于±0.8dB,最大漏极效率为62.5%.  相似文献   

13.
基于国产的SiC衬底GaN外延材料,研制出大栅宽GaN HEMT单胞管芯。通过使用源牵引和负载牵引技术仿真出所设计模型器件的输入输出阻抗,推导出本器件所用管芯的输入输出阻抗。使用多节λ/4阻抗变换线设计了宽带Wilkinson功率分配/合成器,对原理图进行仿真,优化匹配网络的S参数,对生成版图进行电磁场仿真,通过LC T型网络提升管芯输入输出阻抗。采用内匹配技术,成功研制出铜-钼-铜结构热沉封装的四胞内匹配GaN HEMT。在频率为2.7~3.5 GHz、脉宽为3 ms、占空比为50%、栅源电压Vgs为-3 V和漏源电压Vds为28 V下测试器件,得到最大输出功率Pout大于100 W(50 dBm),PAE大于47%,功率增益大于13 dB。  相似文献   

14.
基于GaN高电子迁移率晶体管(HEMT)技术,研制了在0.8 ~4 GHz频率下,输出功率大于50 W的宽带平衡式功率放大器.采用3 dB耦合器电桥构建平衡式功率放大器结构;采用多节阻抗匹配技术设计了输入/输出匹配网络,实现了功率放大器的宽带特性;采用高介电常数Al2O3基材实现了小型化功率放大器单元;采用热膨胀系数与SiC接近的铜-钼-铜载板作为GaN HEMT管芯共晶载体,防止功率管芯高温工作过程中因为热膨胀而烧毁.测试结果表明,在0.8~4 GHz频带内,功率放大器功率增益大于6.4 dB,增益平坦度为±1.5 dB,饱和输出功率值大于58.2W,漏极效率为41% ~62%.  相似文献   

15.
采用多级射频放大电路以及高压脉冲调制技术,实现了S波段高增益小型化200 W功率模块的研制。驱动放大电路采用GaAs功率单片进行功率合成;末级放大电路依托栅长(0.5 μm) GaN高电子迁移率晶体管(HEMT)芯片,选取多子胞结构来改善热分布,通过内匹配技术设计完成了双胞总栅宽24 mm GaN芯片的匹配网络,并设计高压脉冲调制电路提供电源,成功研制出了小型化的S波段200 W内匹配GaN功率模块。测试得出该模块实现了在输入功率10 dBm,栅极电压-5 V,漏极电压32 V,TTL调制信号输入条件下,输出频率在3.1~3.5 GHz处,输出功率大于200 W,功率附加效率(PAE)大于55%。模块实际尺寸为2.4 mm×38 mm×5.5 mm。  相似文献   

16.
采用了内匹配技术和谐波抑制技术,设计并实现了一款 3.8GHz~4.2GHz的功率放大器设计,该放大器采用南京电子器件研究所自主研制的的GaN HEMT管芯芯片, 通过优化设计该放大器在10%的相对带宽、漏源电压28V、10%占空比的脉冲输入的工作条件下,实现了输出峰值功率Pout大于40W,漏极输出功率效率大于60%,充分显示了GaN功率器件宽带、高效和高功率的工作性能,具有广阔的工程应用前景。  相似文献   

17.
突破了GaN MMIC功率放大器的设计、制造、测试等关键技术,研制成功X波段GaN MMIC功率放大器。设计及优化了电路拓扑结构及电路参数,放大器芯片采用了国产外延材料及标准芯片制作工艺。单片功率放大器包含两级放大电路,采用了功率分配及合成匹配电路,输入输出阻抗均为50Ω。制作了微波测试载体及夹具,最终实现了X波段GaN MMIC功率放大器微波参数测试。在8.7~10.9 GHz频率范围内,该功率放大器输出功率大于16 W,功率增益大于14 dB,增益波动小于0.4 dB,输入驻波比小于2∶1,功率附加效率大于40%,带内效率最高达52%。  相似文献   

18.
曹韬  曾荣 《微波学报》2012,28(6):76-79
介绍一种宽带高效放大器设计方法,并基于GaN HEMT器件研制了宽带高效功率放大器。采用源牵引和负载牵引方法获得适应宽带条件的最佳源阻抗和负载阻抗,然后综合宽带匹配网络并实现测试电路设计。实测结果表明,该放大器在0.9~2.7GHz工作频带范围内,放大器输出功率均大于10W,工作效率在51%~72%之间,增益大于13dB。为改善放大器线性度指标,采用商用预失真芯片搭建简单的预失真电路对放大器进行线性化校正,并给出了详细的测试结果。  相似文献   

19.
文章的主要目的是研究第三代半导体AlGaN/GaN功率管内匹配问题。以设计Ku波段20WGaN器件为例,研究了内匹配电路的设计、合成以及内匹配电路的测试,实现了GaN功率HEMT在Ku波段20W连续波输出功率的内匹配电路,并使整个电路的输入、输出电路阻抗提升至50Ω。最终所研制的AlGaN/GaNKu波段内匹配功率管在11.8GHz~12.2GHz频带内,输出功率大于20W。在12GHz功率增益大于5dB,功率附加效率29.07%,是目前国内关于GaN功率器件在Ku波段连续波输出的最高报道。  相似文献   

20.
提出一种宽频带GaN HEMT 逆F 类功率放大器设计方法,并完成S 波段高效率功率放大器的研制。首先对改进的GaN HEMT Angelov 大信号缩放模型进行分析,确定功放管栅宽模型参数;然后通过输出电容补偿、负载牵引技术获得最佳输入、输出阻抗,设计谐波控制网络实现对谐波阻抗的峰化;最后基于宽频带、高效率原则完成电路仿真版图优化。为验证该方法,基于国产GaN HEMT(栅宽1. 25mm)设计了一款中心频率2. 9GHz,带宽大于40% 的高效率逆F 类功放,测试结果表明频带内输出功率均大于3W、漏极效率达到60%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号