首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《煤矿安全》2021,52(6):40-46
采用多重分形理论,对不同变质程度煤样的低温液氮吸附实验数据进行研究,探讨煤样孔隙多重分形特征、分形参数与孔隙参数和变质程度之间的关系。结果表明:不同变质程度煤样孔径分布均存在明显的多重分形特征,随着变质程度的增加,煤样的微孔比表面积占比逐渐增大,且比表面积占比最高的孔径段随变质程度的升高而降低;煤样中孔径越小非均质性越明显,较大孔径分布较均一,煤样孔隙的联通性与变质程度无明显相关关系;奇异指数a_0与谱宽△a均与变质程度呈正相关关系,而参数R_d与变质程度呈反相关关系,即变质程度越高煤样内部孔径分布越不均匀,且煤样内部小概率子集个数占有率越低。  相似文献   

2.
为研究中高阶煤(Vdaf25%)的分形特征对煤层瓦斯吸附规律的影响,针对不同矿区6种中高阶煤样,采用高压容量法测试了煤样的瓦斯吸附能力,利用Langmuir方程拟合得到了表征煤样吸附能力的参数Langmuir体积(VL)和Langmuir压力(PL)。同时,根据电镜扫描(SEM)实验,对煤体表面孔隙特征进行了分析,并利用基于Kolomogrov容量维的分形理论计算得到了煤样孔隙分布的分形维数。在此基础上,研究了分形维数对中高阶煤瓦斯吸附的影响。研究结果表明:不同煤样孔隙结构差异显著,煤体表面孔隙分布具有明显的非均质性和分形特征;煤体变质程度对分形维数具有重要影响,煤化作用使得孔隙结构更加复杂;煤体表面分形对VL和PL的影响不同,VL随着分形维数的增加呈线性增加,而PL与分形维数的关系符合二次曲线,说明煤体表面越复杂,煤体越易于吸附瓦斯。  相似文献   

3.
为研究平煤矿区煤储层特征及其瓦斯赋存特性,采用低压液氮吸附法对6种典型煤样的储层特征进行了分析,并测试了煤样瓦斯吸附能力,分析了煤样孔隙结构参数对瓦斯吸附的影响。研究结果表明:不同煤样孔隙差异显著,煤体表面具有明显的非均质性;煤中的微孔发育,孔径分布呈多峰值;变质程度(挥发分)对煤中的微孔具有重要影响,而对小孔的影响不明显;煤对气体的吸附主要集中在微孔段,不同煤样的吸附能力差异明显,Langmuir体积只与微孔有关,而Langmuir压力受微孔和小孔分布的共同影响。研究结果可为平顶山矿区瓦斯防治与利用提供理论依据。  相似文献   

4.
《煤矿开采》2017,(6):88-91
为研究不同破坏类型煤体结构差异性及其对瓦斯吸附的影响,以山西沁水煤田王庄煤矿3号煤层为工程背景,测试了4种不同破坏类型煤样的瓦斯吸附性能;采用低温液氮吸附法分析了不同破坏类型煤样的孔隙结构特征,通过FHH公式计算了煤体孔隙分形维数,并针对不同变形破坏程度煤的结构差异性进行了对比分析。结果表明:不同破坏类型煤样的瓦斯吸附能力差异显著,煤样的Langmuir体积VL从24.34cm~3/g增加到36.16cm~3/g,煤体破坏程度的增加有利于瓦斯吸附;不同破坏类型煤样的孔隙结构差异显著,煤样中值孔径变化范围为13.54~28.37nm,总比表面积在0.389~0.965m~2/g之间变化,分形维数值在2.389~2.682之间变化;总体来看,随煤体破坏程度的增加,煤孔径减小,孔比表面积增加,孔隙结构趋于复杂化,煤体拥有更强的吸附能力。  相似文献   

5.
《煤矿安全》2016,(1):33-37
依托渭北煤田韩城矿区煤样,基于压汞技术采用多重分形理论分析构造煤孔径分布的非均质性,计算其多重分形谱f(a),并分析了多重分形参数随变形程度增强的变化规律。结果表明:煤样压汞孔径分布具多重分形特征,但不同类型构造煤孔径分布的多重分形程度存在明显差别。随构造变形增强,f(a)谱由右钩状(碎裂煤)转化为左钩状(碎粒煤、糜棱煤),奇异性指数α0、f(a)谱宽度αq--αq+及左锋宽度α0-αq+升高,说明强烈的脆性变形和韧性变形易使孔隙结构趋于复杂,孔隙团聚特征增强,孔体积高值分布非均质性加大,渗透性变差。α0和α0-αq+可作为区分构造煤孔隙结构差异演化的主要指标。多重分形参数变化可归因于由构造变形增强所引起的孔体积峰值的转变、碎粒孔的产生及显微构造的不均匀分布。  相似文献   

6.
不同煤种微孔隙特征及其对突出的影响   总被引:1,自引:0,他引:1  
为了考察不同煤种微孔隙特征及其对突出的影响,对不同变质程度的煤样进行低温氮吸附试验,分析了不同变质程度煤吸附等温线及吸附回线的类型,并划分为Ⅰ型、Ⅱ型和Ⅲ型,测定了煤中微孔形态及微孔隙分布随煤变质程度变化的关系,并讨论了微孔形态及其分布对突出的影响.结果表明,随着煤变质程度增加,煤中微孔形状由大孔变为小孔,由封闭孔变为开放孔,且特殊形状的细颈瓶状孔也有所增加,微孔数量也随之增加,导致比表面积增大,吸附瓦斯增多.但微孔扩散不畅,易诱发突出.突出煤体具有Ⅲ型等温线特征.  相似文献   

7.
《煤矿安全》2017,(12):5-8
为研究不同软硬煤的微结构差异性特征,以山西潞安王庄煤矿为工程背景,针对6种不同软硬煤样,采用电镜扫描(SEM)分析了表面形貌特性,并结合低温液氮吸附法研究了软硬煤的孔隙结构特征,对不同变质变形程度煤样的微结构差异性进行了对比分析。研究结果表明:构造变形对软煤的表面结构有显著影响,软煤较对应的硬煤表面更粗糙,拥有更复杂的表面孔隙结构;煤化作用对孔隙结构具有差异显著,煤的孔径随变质程度的增加而逐步变小;孔总比表面积随煤化程度的加深而变大,所有煤样微孔比表面积所占比例均超过了60%,比表面积主要由微孔贡献;软煤的平均孔径始终小于对应的硬煤,而孔比表面积始终大于相应的硬煤;构造变形使得煤体结构变得更复杂,构造软煤具有超前演化特征。  相似文献   

8.
构造煤的孔隙结构具有非均质性、自相似性及标度不变性等分形特征,难以用传统的欧式几何方法对其孔隙特征进行定量描述。为了研究构造煤不同尺度孔隙结构的分形特征及表征方法,采用低温CO2吸附法、低温N2吸附法和压汞法等分别测试了4种试验煤样(原生结构煤、碎裂煤、碎粒煤和糜棱煤)的微孔、介孔及大孔孔隙结构,分析了构造煤中不同尺度孔隙的分形特征,探讨了构造煤孔隙结构多尺度分形特征综合表征方法,运用灰色关联方法研究了构造煤孔隙分形维数的影响因素。研究结果表明:基于CO2吸附数据的微孔填充模型、基于N2吸附数据的FHH模型和基于压汞数据的热力学模型分别能够对构造煤微孔、介孔和大孔孔隙的分形特征进行有效表征,不同尺度孔隙的分形维数随构造煤类型变化的规律不同,其中微孔分形维数及介孔中2~6 nm孔径段的分形维数随构造煤的破坏程度增大而增高,其余尺度孔隙的分形维数变化则没有明显规律。以阶段孔容比例为权重,对构造煤不同尺度的孔隙分形维数进行加权计算,即得构造煤多尺度综合分形维数,其能够反映不同尺度孔隙的分形特征,表现为多尺...  相似文献   

9.
煤体孔隙结构研究主要侧重于某一种孔隙结构测定技术方法,而单一测定方法在原理上不能准确表征煤体多尺度孔裂隙结构特征。在分析压汞法、液氮吸附法、二氧化碳吸附法以及小角X射线散射法4种试验方法的试验原理、适用条件和煤体物性特征基础上,提出了基于数据融合的煤全孔径孔隙结构集成测定和表征方法。采用新方法从孔隙形状、孔容、比表面积、孔径分布4个方面,研究了2种不同变质程度软硬煤孔隙结构的差异性。结果表明:煤全孔径孔隙结构集成测定和表征方法融合了上述4种方法测定孔隙结构的优势,结果更可靠、合理; 2种煤样的软煤总孔容大于硬煤,软硬煤大孔孔容所占比例最大,且两者阶段孔容的差异性主要在于中孔和大孔阶段,其中中孔差距最为明显。而软煤微孔孔比表面积远大于硬煤。构造作用对于高变质程度煤的中孔孔容发育影响最大,对于低变质程度煤的大孔孔容发育影响最大;构造作用对于低变质程度煤的微孔表面积影响较小。上述研究成果为开展煤体多尺度孔隙的瓦斯吸附、运移规律和机理研究奠定了物性基础。  相似文献   

10.
煤储层中孔隙结构的发育程度决定了煤体瓦斯的吸附性能,通过低温液氮吸附实验测试了长焰煤、焦煤和无烟煤3种不同变质程度煤样的孔隙结构;基于分形理论对孔隙结构进行了量化表征,并结合煤的甲烷等温吸附实验,深入分析了不同变质程度煤孔隙结构对甲烷吸附特性的影响。结果显示:变质程度与孔隙分形维数D1呈现出“浴盆式”变化规律,与分形维数D2符合线性负相关关系;而煤样的微孔比表面积和孔容均与吸附常数a呈正相关关系,即微孔比表面积和孔容越大,煤的吸附能力越强;随着孔隙分形维数D1的增加,吸附常数a呈现出近似线性增长趋势,煤体孔隙结构越不光滑,比表面积也会越大,从而使得煤的甲烷极限吸附量也会有所升高。  相似文献   

11.
《煤矿开采》2017,(3):9-11
以8种不同变质程度煤样为研究对象,采用高压容量法和低压氮气吸附等实验手段,对煤样表面分形特征及吸附性能进行了分析,并利用FHH方程计算得到了煤样表面分形维数。研究结果表明:不同煤样瓦斯吸附能力差异显著,煤体表面分形对气体吸附具有重要影响;随着煤化程度的增加,分形维数呈现先减小后增大的U型曲线。  相似文献   

12.
为研究煤孔隙分形特征及其对瓦斯吸附特性的影响,针对沁水盆地8个煤样开展了低温液氮吸附试验,采用FHH分形理论探讨了煤表面孔隙分形特征,测试了各煤样的瓦斯吸附常数a、b值,并分析了孔隙分形维数对煤体瓦斯吸附的影响。研究结果表明,煤表面孔隙在不同压力段具有不同的分形特征,D1和D2分别代表煤表面微孔、中孔及大孔的分形特征。随变质程度的升高,D1与R0呈现出良好的线性正相关关系,而D2随R0的增加则呈现出先快后慢的抛物线变化。煤体瓦斯吸附特性与煤表面孔隙分形特征密切相关,分形维数D1、D2数值越大,a值越大,煤体瓦斯吸附能力也就越强;分形特征对吸附常数b值的影响较小。  相似文献   

13.
为研究不同变质程度煤孔隙结构分形特征及其对瓦斯吸附特性的影响,通过压汞试验测试了9组不同变质程度煤样孔隙结构,利用Menger海绵模型分析了不同变质程度煤孔隙结构分形特征,结合煤样吸附常数,研究了孔隙结构分形特征对瓦斯吸附特性的影响。研究结果表明,煤孔隙在不同孔径段具有不同的分形特征,渗流孔分形维数D_1和吸附孔分形维数D_2均随变质程度的增加呈线性增大。煤孔隙分形特征对瓦斯吸附特性具有一定的影响,渗流孔分形维数D_1与吸附常数b呈良好的线性关系,与极限吸附瓦斯量a的关联性不大,表明渗流孔分形维数D_1对吸附瓦斯速率影响较大,对吸附能力影响较小;吸附孔分形维数D_2与极限吸附量a呈正相关关系,与吸附常数b关联关系不明显,说明吸附孔分形维数D_2对瓦斯吸附能力影响较大,对吸附瓦斯速率影响不明显。  相似文献   

14.
采用压汞实验和高压等温吸附实验分析不同变质程度煤的孔隙结构特征及瓦斯吸附能力,并结合煤样工业分析数据,进一步探讨孔隙结构特征对煤层瓦斯渗透性影响。研究表明:2种煤样的压汞孔隙率随煤级的升高呈现出从高到低的变化趋势;松河3号煤样的孔径分布呈现出微小孔径的单峰特点,而林华9号煤样的孔径分布呈现出小孔径和中、大孔径的双峰特点;高压等温吸附实验测的松河3号煤的瓦斯吸附能力要强于林华9号煤。结论认为:煤的孔隙特征、孔隙率和瓦斯吸附能力均受煤变质程度的影响,且在低变质煤特征突出。  相似文献   

15.
为研究酸化作用后煤体的孔隙结构特征,采用低场核磁共振技术和X射线衍射实验方法,测试了高阶煤自然煤样和酸化煤样的孔隙结构和矿物含量,并根据分形理论对比研究了2种煤样孔隙的分形维数,探讨了酸化作用原理.研究结果表明:自然煤样和酸化煤样中微孔和过渡孔都占较大的比例;煤样酸化后,其孔隙率增大,最小孔径和最大孔径都变大;酸化作用...  相似文献   

16.
为探究液氮冻融对煤体孔隙结构和吸附行为的影响,采用低温氮气和二氧化碳吸附法对冻融前后煤样孔隙结构进行表征,并开展了不同冻融次数下甲烷等温吸附实验。结果表明:冻融后煤样的滞后指数HI降低,孔隙系统的连通性得以改善,有利于煤中气体的运移;2~100 nm孔隙在冻融后均有不同程度的增加,一些孔隙演变为比自身孔径更小甚至小于2 nm的孔隙;冻融后微孔孔径分布发生了变化,微孔孔容和微孔吸附量增加;随着液氮处理次数增加,对甲烷最终吸附量的影响不断减弱,达到4次处理后,液氮处理对煤体最终吸附量的影响几乎达到饱和;煤样经不同次数的液氮处理后朗格缪尔参数V;和p;均增加,p;越大越有利于煤层气的开采。  相似文献   

17.
煤储层中孔隙的发育特征控制着煤中瓦斯的吸附解吸与扩散性能,为了研究不同变质程度硬煤的孔隙结构特征差异,采用压汞法和液氮吸附法相结合的手段,对园子沟矿3煤、窑街三矿2煤和卧龙湖矿8煤三种,煤样进行了全孔径孔隙结构分布测定,利用分形理论对比分析了不同变质程度硬煤孔隙结构特征。研究结果表明:园子沟、窑街和卧龙湖三种不同变质程度硬煤均含有丰富的开放孔隙特征,随着变质程度增大,煤的孔隙度呈现高-低-高的变化规律;园子沟和卧龙湖煤样孔形多以墨水瓶、锥形孔等孔形为主,窑街煤样孔形多以圆筒形孔为主;而对比孔隙结构分形维数可知,园子沟煤样孔隙分形维数最大,卧龙湖煤样次之,窑街煤样孔隙结构相对简单,也呈现出高-低-高的变化规律。  相似文献   

18.
孟磊 《煤炭工程》2014,46(6):118-120
为探求华北区域煤样的孔隙发育特征,采用压汞法对采自此区域不同煤阶样品孔隙结构和分形维数进行研究。研究结果表明,煤体孔容和比表面积分别由大孔和微孔发育情况所决定,且100nmD1000nm范围内中孔相对不发育;随着Ro,max变化,煤体孔容和比表面积均呈现两端高大中间低的曲线形态;煤样中大于50.4~95.4nm孔径具有分形特征,此孔径范围主要包括部分过渡孔、中孔和大孔,并且随着Ro,max的增加,分形维数整体呈现降低的趋势。  相似文献   

19.
为研究煤的纳米级(100 nm)孔隙对瓦斯吸附能力的影响,对3种不同煤样的原煤和构造煤孔隙结构进行研究,并建立温度-压力综合吸附模型分析煤体的吸附瓦斯能力。研究结果表明:纳米级孔隙(孔径小于100 nm)是煤对瓦斯吸附强的决定因素,纳米级孔隙微孔的比表面积是影响瓦斯吸附量的主要因素;在相同温度压力下,古汉山矿煤样瓦斯吸附量是薛湖矿煤样和平顶山矿煤样的1.3~1.8倍和1.02~1.2倍;微小孔的孔容与瓦斯吸附量呈现出明显的正相关;通过建立温度-压力模型预测瓦斯吸附量是可行的。  相似文献   

20.
贾男 《煤矿安全》2021,52(1):53-57
为研究并改善富含矿物质煤体孔隙结构特征,基于X射线衍射和低温氮吸附实验测试了贫瘦煤酸化前后碳酸盐矿物质含量及孔隙结构参数,并根据孔隙分形理论利用FHH模型求得了酸化前后不同孔段的分形维数。结果表明:酸化可以有效溶解煤体孔隙中的矿物质并溶蚀煤基质,减少煤体孔隙中微孔所占比例,增加中孔和大孔的比例,增强了孔隙结构之间的连通性,同时减少了煤的比表面积,有利于吸附态瓦斯向游离态进行转化;煤样低压段分形维数大于中高压段的分形维数,煤体孔隙中微孔结构较中孔大孔结构更加复杂,煤样经酸化后孔隙分形维数变小,煤样孔隙结构趋于简单化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号