首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用CFD软件对喷射成形工艺过程雾化室内金属颗粒的行为进行了模拟,研究了不同雾化压力下、不同粒径的金属颗粒运动轨迹及温度变化情况。模拟结果表明,随着雾化压力的增大,金属颗粒的运动速度明显增加,金属颗粒到达沉积器上的温降更加显著,且颗粒运动轨迹的锥形区域扩散角减小;在相同的雾化压力下,粒径较大的金属颗粒在雾化室内的飞行速度和温降速率明显小于粒径较小的颗粒。  相似文献   

2.
采用计算流体动力学FLUENT软件模拟研究了电极感应熔化气体雾化制粉工艺的气体流场状态,分析了雾化气体压力、气体温度以及熔化室与雾化室气体压力差对气体流场特征的影响规律。结果表明,不同工艺参数下,气体流场均为一系列膨胀波和压缩波形成的“项链状”射流结构;提高气体压力和温度能有效提高气体射流速度,理论上有利于熔体破碎,但气体压力过大会导致气体回流区影响范围增加,并向喷嘴中心孔(熔体下落通道)方向移动,可能会阻碍熔体下落,造成熔体喷溅;提高熔化室与雾化室气体压力差,能明显抑制气体回流区的形成,保证熔体顺利下落,但会使雾化室内气体射流速度下降,降低熔体破碎效果。  相似文献   

3.
根据非稳定流体力学理论,导出了金属雾化过程中几种条件下液流速度表达式,分析了保持液流稳定性的基本途径。  相似文献   

4.
从理论与实验两方面研究了雾化气体流速场和雾化熵滴与气体流场的交互作用,建阙雾化气体和熔滴流速的数学模型,探讨了雾化熵滴对雾化气体流速的影响。  相似文献   

5.
紧耦合气雾化制粉过程中,当雾化气压超过某一临界值时,直管环缝型喷嘴的气雾化流场结构存在"开涡—闭涡"突变现象,雾化效果随之发生显著改变。该文采用数值模拟方法研究紧耦合喷嘴气体流场中开涡和闭涡结构特征及其突变行为,以及雾化介质类型和喷嘴几何结构参数(喷射顶角、导液管伸出长度和末端直径、环缝宽度)对临界雾化压力Pc的影响。结果表明:当雾化压力P略高于Pc时,马赫盘迅速截断回流区,流场结构由开涡向闭涡突变,并引起喷嘴熔体出口下方抽吸压力Pa骤降,突变前后抽吸压力差ΔPa约为30 kPa;雾化介质类型和喷嘴主要几何结构参数对Pc有显著影响,但对ΔPa无明显影响。  相似文献   

6.
气体雾化法制备的金属粉末具有粒度细小、球形度好、纯净度高的特点。近年来,随着3D打印技术的发展,气体雾化制粉技术受到广泛关注。总结了目前国内外对气体雾化制粉技术的研究进展,主要包括雾化工艺参数对粉末特性的影响以及气体雾化制粉过程中单相气体流场结构、高温熔体初次破碎过程和熔滴二次破碎过程的模拟仿真。  相似文献   

7.
通过多次试验后得出雾化喷嘴的雾化特性公式,在此基础上建立了一种模拟喷射成形过程中圆锭坯外形生长的数学模型.该数学模型考虑了喷射成形过程中各种工艺参数,如喷嘴的雾化参数、偏心距离、沉积盘的旋转速度和下拉速度等参数的影响.经过模拟计算,得到了锭坯生长的三维外形尺寸,与实际喷射成形制备的锭坯外形对比,二者吻合很好;采用该模型分析了不同时间下锭坯的轮廓形状、偏心距离以及下拉速度变化后的锭坯轮廓形状.综合分析得出,此数学模型可以预测在不同工艺参数下喷射成形锭坯的外形生长过程.  相似文献   

8.
采用组合式皮托管测量的方法测量了喷射沉积过程中的雾化气体流场,并基于神经网络的方法对流场进行数值模拟,获得了较为精确的雾化气体压力与流场中轴向气体速度之间的关系,实现了对不同气压下气体流场的预测。  相似文献   

9.
10.
使用真空感应熔炼气体雾化方法,在不同雾化压力(7、8、9 MPa)下制备了球形GH3536合金粉末。通过使用多相流模型和离散相模型对喷嘴下方区域进行了数值模拟,再现了不同雾化气压下的一次雾化和二次雾化过程。实验和模拟的结果表明:回流区的气体速度和滞止压力随雾化气压的提高而增加,雾化气压的增加使粉末粒度不断减小,模拟结果与实验结果吻合,验证了雾化模型的可靠性。提高雾化气压可提高细粉收得率,但颗粒尺寸的减小和颗粒形貌的改变会对粉末的流动性能造成直接影响,在雾化压力8 MPa下制备的粉末具有最佳的流动性和松装密度,分别为14.34 (s·50g-1)和4.728 g·cm-3。  相似文献   

11.
气雾化制粉技术因粉末球形度高、气体杂质含量低等优点已经成为现在一种重要的粉末制备方法。雾化过程可粗略分为破碎和凝固两部分,涉及传热,物质交换以及多相流相互耦合等复杂现象。目前,人们对与雾化机理以及工艺参数的控制方法没有系统认识,制约了气雾化技术快速发展和工业化生产。本文简述了气雾化制粉中合金熔体的破碎行为机理,总结了最近几年关于气体流场结构、雾化工艺参数优化和计算流体力学在气雾化技术中的研究新进展,并且介绍了一些新技术在气雾化研究中的应用。  相似文献   

12.
Gas flow field in nozzles and out of nozzles was calculated for Laval orifice and straight orifice nozzles. The results showed that the flow generated by the Laval nozzle had a higher exit velocity in the vicinity of the nozzle, in comparison with that of the straight nozzle, that is to say, a Laval nozzle was more efficient than a straight one in disintegrating the melt stream and was apt to produce finer powders. The flow generated by the Laval nozzle was less convergent and the velocity gradient along the radial direction was more moderate than that of a straight nozzle, which could contribute to a broad distribution of melt particles. According to their flow characteristics, the Laval nozzle was reckoned as a better choice of producing larger spray-formed billets.  相似文献   

13.
气雾化法是最早用来生产球形金属粉末的技术之一,有力地支持着3D打印技术的发展。由于粉末形成过程复杂,难以直接观察研究,为此研究人员采用仿真模拟的方法再现气雾化过程,揭示粉末形成机理。综述了气雾化过程中气流速度分布特征、金属熔体到粉末过程中破碎、球化、飞行、凝固的理论模型的研究成果,总结了影响粉末颗粒的形成过程相关的物理性能参数与工艺参数。最后指出气雾化制粉理论研究的发展趋势。  相似文献   

14.
气雾化工艺参数对金属粉末粒度影响的研究   总被引:2,自引:0,他引:2  
气雾化生产金属粉末是一个复杂的过程,它涉及气体动力学、流体力学、冶金热力学等许多方面的知识,因而影响因素较多。从雾化工艺参数方面出发,研究了其对粉末粒度的影响,为工业生产提供了有益的参考。  相似文献   

15.
气雾化Al-Pb系轴瓦合金   总被引:9,自引:0,他引:9  
采用气雾化技术,制备了应用于工业化RSPM工艺的高质量AlPb系合金粉末。对雾化粉末显微结构的分析表明,第二相(铅相)在基体中分布均匀,其粒径大小取决于凝固过程的冷速;不同粒径的粉末第二相分布随冷速的增加而分布更均匀、细化。对雾化粉末中各元素分布的分析表明,硅、铜等元素在晶界上有富积现象。  相似文献   

16.
气雾化微细金属粉末的生产工艺研究   总被引:3,自引:5,他引:3  
介绍了气雾化微细金属粉的生产工艺,金属熔炼,雾化制粉,粉末分级及收集都是在保护气氛中进行,气体喷嘴和漏液嘴紧密耦合并用高压气体雾化。生产的金属粉末颗粒为球形,流动性好,氧含量低,细粉收得率高,可为粉末冶金及相关行业提供优质的金属粉末原料。  相似文献   

17.
文章研究了气体压力大小在雾化粉末工艺过程中的影响。结果表明,在限制式的喷嘴结构中,当熔体温度、气流喷射角度确定的条件下,气体压力较小,雾化颗粒不能形成,熔体会在导管中凝固或形成倒锥形的粘结块;随着气体压力的增加,粉末球化程度增大,平均颗粒减小。  相似文献   

18.
气雾冷却是一种适合于带钢镀后冷却的冷却方式。以空气和水为工作介质,对新开发的气水直交型喷嘴的雾化性能进行试验研究,主要测试流量密度分布、雾化角和流量压力特性。试验发现:喷嘴雾化后液滴粒度很小,且对水量变化不敏感;喷嘴的雾化角较小;喷气箱体的压力主要受喷水流量的影响,通过回归分析得到了用于喷箱设计的压力流量关联式。  相似文献   

19.
20.
急冷水雾化工艺对金属粉末性能的影响   总被引:8,自引:1,他引:8  
为了开发制粉新工艺和制备用于MIM的微细合金粉末,设计了组合雾化。在常规水雾化喷嘴的下方附加了冷却喷嘴,并以锡青铜粉为试验对象,研究了工艺条件对水雾化金属粉末性能的影响。结果表明,使用同样的设备,急冷组合雾化与单一雾化相比,能使粉末更加细化。同时,由于粉末冷却速度的提高,使粉末氧含量得到降低,颗粒外形变得更加不规则。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号