共查询到20条相似文献,搜索用时 8 毫秒
1.
为了解决过度稀疏的评级矩阵导致矩阵分解中的过拟合问题,提出了一种融合标签和时间信息的矩阵分解推荐模型TTMF(matrix factorization recommendation algorithm fusing tags and time information),以丰富单一数据源,缓解矩阵分解中的过拟合问题.首先通过评级数据和标签信息定义用户标签偏好值和项目标签关联度,分别表征用户对标签的兴趣、标签信息和项目之间的联系,并增加时间信息表示用户兴趣随时间的变化;然后,建立用户—项目、用户—标签和项目—标签矩阵模型,通过梯度下降法进行矩阵分解,完成推荐.基于MovieLens数据集实验结果显示,TTMF算法的RMSE(root mean square error)比传统方法LFM(latent factor model)降低了7%. TTMF算法具有更好的推荐效果. 相似文献
2.
3.
基于标签和协同过滤的个性化资源推荐 总被引:1,自引:0,他引:1
传统的协同过滤算法以用户评分体现用户兴趣偏好及资源相似度,忽视了用户、资源自身的特征,并且对稀疏数据和新资源的推荐质量明显下降。在Web2.0时代下,标签可被用户依个人偏好进行自由资源标注。因此,提出了基于标签和协同过滤的推荐算法。其基本思想是将标签作为体现用户兴趣偏好和资源特征的信息,依据用户、标签及资源的多维关系生成用户及资源的标签特征向量,并计算用户对资源的偏好程度和资源相似度,然后基于用户的历史行为预测用户对其他资源的偏好值,最后依据预测偏好值排序产生Top-N推荐结果。通过与传统的协同过滤算法的比较,验证了本算法能有效缓解数据的稀疏性,解决推荐的冷启动问题,提升推荐的准确性,获得更好的推荐效果。 相似文献
4.
当今各类推荐系统中存在着冷启动、数据稀疏性的问题,严重影响其推荐质量。为了有效缓解由于数据不完整导致的推荐效果不理想,提出一种融合标签信息的卷积矩阵分解推荐算法TaSoConvMF(Convolutional Matrix factorization Recommendation Algorithm Fusing Social Tagging)。该算法将卷积神经网络融合进概率矩阵分解模型,并利用评分矩阵和标签矩阵联合监督,运用联合概率矩阵分解计算用户-资源、用户-标签、资源-标签三个矩阵的隐式向量,根据评分矩阵多次对模型参数进行优化。该算法通过在豆瓣评分数据集和MovieLens10M数据集上进行多次实验,采用RMSE指标进行评估,预测结果表明推荐效果有所提升。 相似文献
5.
基于标签的推荐算法已成为研究热点,现有相关研究集中在利用标签改进协同过滤推荐算法和基于内容的推荐算法,鲜有研究把标签引入更先进的矩阵分解推荐算法。而现有矩阵分解推荐算法大多使用商品类别作为因子向量对用户偏好和商品特征建模,限制了其精度的提升。本文使用标签构建因子向量,提出一种新的基于标签的矩阵分解推荐算法。经过真实数据检测,本文提出的推荐算法较以往基于类别的矩阵分解算法在精度上有了显著提升。 相似文献
6.
推荐系统需要利用到大量的用户行为数据,这些数据极有可能暴露用户的喜好,给人们关心的隐私问题带来巨大的挑战。为保证推荐精度与用户隐私,提出一种结合差分隐私与标签信息的矩阵分解推荐模型。该模型首先将标签信息加入到项目相似度的计算过程;随后融入到矩阵分解推荐模型中提高推荐精度;最后运用随机梯度下降法求解模型最优值。为解决用户隐私问题,将拉普拉斯噪声划分成两部分,分别加入项目相似度与梯度求解过程中,使得整个推荐过程满足ε-差分隐私,并在一个真实的数据集上分析验证算法的有效性。实验表明,提出的方法能在保证用户隐私的情况下,仍具有较高的推荐精度。 相似文献
7.
利用推荐系统进行群组推荐时,群组成员之间的交互关系对推荐结果有很大影响,但传统的群组推荐算法较少考虑用户信任度的重要性,致使社交关系信息不能得到充分利用。在群组融合时考虑群组内用户间的交互关系,提出一种基于用户信任度和概率矩阵的群组推荐算法。在获取用户信任度数据后,使用概率矩阵分解(PMF)算法补全信任度矩阵并进行归一化处理,得到相似度矩阵,同时在后验概率计算过程中加入用户间的信任度因素,通过极大化后验概率获得预测评分。在此基础上,对群组中用户的权重进行归一化处理,使用基于用户交互关系的权重策略融合群组成员偏好,得到最终的推荐结果。在Epinions和FilmTrust数据集上的实验结果表明,该算法可使融合结果更具群组特性,同时提高推荐结果的可靠性和可解释性,且均方根误差和命中率均优于PMF、NeuMF、RippleNet等对比算法。 相似文献
8.
针对协同过滤推荐算法所面对的稀疏矩阵和新用户问题,提出基于用户邻域模型与矩阵分解的推荐算法。通过对用户历史信息构建邻域模型以提高对新用户预测的准确性,同时考虑到矩阵稀疏和数据量较大会引起时间和空间复杂度过高,运用奇异值矩阵分解的方法,从而减小矩阵稀疏和数据量大的影响,提高推荐系统的准确性。通过Movie Lens数据集验证该算法的有效性。 相似文献
9.
10.
随着互联网的飞速发展所带来的“信息过载”问题使准确的新闻推荐技术变得越来越重要。提出基于兴趣标签的个性化新闻推荐系统,利用Hadoop大数据平台,采用基于项的协同过滤算法,通过收集用户的浏览记录和兴趣标签,挖掘用户的主题兴趣,建立用户的兴趣模型,提高个性化推荐系统的准确性和可扩展性,具有良好的推荐效果。 相似文献
11.
针对细粒度和多类别的观影用户行为分析准确度不高和推荐误差大的问题,提出基于年龄信息正则化矩阵分解的观影用户行为分析算法.本算法通过6040位用户对3925部电影的1000209条相关评论信息,通过对比三种算法的均方误差和均方根误差,相较于基于内容的推荐算法分别降低了0.34%和0.17%,相较于基于用户的协同过滤算法分... 相似文献
12.
传统协同过滤推荐算法存在数据稀疏性、冷启动、新用户等问题.随着社交网络和电子商务的迅猛发展,利用用户间的信任关系和用户兴趣提供个性化推荐成为研究的热点.本文提出一种结合用户信任和兴趣的概率矩阵分解(STUIPMF)推荐方法.该方法首先从用户评分角度挖掘用户间的隐性信任关系和潜在兴趣标签,然后利用概率矩阵分解模型对用户评分信息、用户信任关系、用户兴趣标签信息进行矩阵分解,进一步挖掘用户潜在特征,缓解数据稀疏性.在Epinions数据集上进行实验验证,结果表明,该方法能够在一定程度上提高推荐精度,缓解冷启动和新用户问题,同时具有较好的可扩展性. 相似文献
13.
《计算机科学与探索》2018,(2):197-207
如何从大量无序的信息中向用户准确推荐其最感兴趣的信息,是推荐系统研究领域的重要课题。为此提出一种融合用户兴趣矩阵及全局偏好的推荐算法,用于个性化服务推荐。首先,引入兴趣标签机制形成用户兴趣链,对用户服务评分集合中未评价服务进行填充,对已评价服务进行互补,从而形成用户兴趣矩阵;其次,采用兴趣矩阵的欧几里德距离进行局部相似度计算;最后,联合用户认知差异和全局行为差异形成全局偏好相似度。算法在有效融入了用户的个性化偏好信息的同时,减少了数据集稀疏性,提高了推荐的准确性。在真实的Movie Lens 1M数据集上进行的大量实验表明,与当前具有代表性的推荐算法相比,算法显著提高了推荐精度。 相似文献
14.
15.
在实现推荐的过程中,用户对项目的浏览和关注的时间顺序是推荐算法中重要的数据信息,同一用户在不同时间对项目的喜好不同对推荐结果也有着一定的影响.本文在神经协同过滤模型的框架下,提出将长短期记忆网络和广义矩阵分解进行融合,同时捕捉用户的短期偏好和长期偏好.利用长短期记忆网络对时序数据的强拟合能力,学习用户的短期偏好信息,捕... 相似文献
16.
协同过滤推荐算法是个性化推荐系统中最常用的方法之一,其中相似度计算直接影响基于内存的协同过滤推荐算法的推荐质量.针对协同过滤推荐算法中传统的用户间相似度计算方法仅考虑共同评分项评分数值上的差异导致难以准确衡量非偏好评分场景中用户间相似度的问题,本文提出一种基于余弦相似度并融合评分相对差异的用户间相似度计算方法.该方法考虑评分规模上的差异,计算评分相对相似度并且引入放大系数,在非偏好评分的场景下可以更加准确地区分用户间差异.在真实的数据集上完成对比实验分析,结果表明在非偏好评分场景下,所提方法相较于对比方法能降低预测误差,提高推荐质量. 相似文献
17.
矩阵分解通过降维的方式可以在一定程度上解决数据的稀疏性问题。考虑时间信息可以根据时间信息的变化来预测用户对物品的兴趣趋势。考虑邻域关系可以产生以共同兴趣为基础的推荐。但是,现在所研究的矩阵分解当中很少综合考虑时间信息和邻域关系对用户评分预测的影响。本文提出一种融合时间和邻域信息的矩阵分解算法,此算法把时间信息与领域关系直接映射到用户-物品-时间的三维空间,通过隐含特征直接寻找他们之间的潜在关系。在MovieLens上的实验结果表明,本文提出的推荐算法在一定程度上提高了推荐结果的准确性。 相似文献
18.
传统基于用户的协同过滤推荐算法在计算用户相似性时经常面临数据稀疏的问题,同时忽略了不同评分项目之间的差异。针对这些问题,提出一种基于FunkSVD矩阵分解和相似度矩阵的推荐算法。利用用户评分数据与物品标签数据计算出用户的相似度矩阵;利用FunkSVD对得到的相似度矩阵进行矩阵分解,生成新的用户相似度矩阵;根据用户之间评分数据对两个相似度矩阵中的用户相似度加权组合,并生成用户的综合相似度矩阵来对用户进行评分预测。经过Movielens数据集的实验表明,该算法提高了预测的准确性,优于传统的推荐算法。 相似文献
19.
个性化推荐研究中,垃圾标签不仅会导致数据稀疏性问题,同时影响推荐的实时性和精确性。因此提出一种优化标签的矩阵分解推荐算法OTMFR,该算法分为两个阶段:首先优化标签,在建立三部网络图的基础上提出一种标签排序算法,利用互增强的关系得到关于标签流行度的排序,去除排序靠后的垃圾标签;然后在此基础上利用用户和资源对标签的偏好信息构建用户-资源偏好矩阵,并从矩阵分解的角度为用户产生推荐。在Delicious数据集上的实验结果表明,该算法在推荐精准度上有较为明显的效果。 相似文献
20.
近十年来,协同过滤(CF)推荐系统成功地为用户提供了个性化的产品和服务。然而,用户—物品矩阵的稀疏性、推荐精度不高等问题仍然是一个挑战。针对这些问题,在矩阵分解模型基础上,提出了耦合用户和物品辅助信息的矩阵分解混合协同过滤框架;然后,基于此框架又提出了耦合物品属性信息相似度(COS)的过滤模型。大规模真实数据集上的实验表明,该模型不但可以有效解决物品相似度度量问题,而且相比传统方法,尤其是在物品特征非常稀疏的情况下,推荐准确性得到有效改进。 相似文献