首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
进行花岗岩母岩(I类花岗岩)、热液充填体(II类花岗岩)、A类裂隙后期充填花岗岩(母岩与充填体之间的胶结界面横向贯通试样,III类花岗岩)和B类裂隙后期充填花岗岩(母岩与充填体之间的胶结界面纵向贯通试样,IV类花岗岩)高温三轴应力下的渗透特性研究。得出I,II,III及IV类花岗岩渗透率随温度变化的阈值温度分别为300℃,200℃,300℃和250℃。低于阈值温度时,4类花岗岩渗透率变化不大;高于阈值温度时,4类花岗岩渗透率分别快速提高了1,3,2及3个量级,其中II,IV类花岗岩渗透率量级在450℃以上达到10-1 mD。利用显微光度计观测了裂隙后期充填花岗岩的细观结构及其在高温作用下热致裂缝数量的变化。发现300℃后长度大于200μm的大裂缝的贯通是导致I,III类花岗岩渗透率增加的原因;充填体因溶蚀作用所具有的较低的强度及劣化的力学性能是致使Ⅱ,IV类花岗岩渗透率大幅超过I,III类花岗岩的主要原因。通过水岩热对流模型分析可知,在裂隙后期充填花岗岩内进行储层建造将大幅缩减施工成本、增加储层水岩换热面积及提高热交换效率,为深层干热岩地热开采提供新的技术及理论思考。  相似文献   

2.
干热岩地热开发中,井筒钻进及热储层的热交换都涉及高温岩体受不同程度的冷热循环,导致井筒破裂失稳或热储层破裂程度增加,为了揭示其机制,采用岩石力学试验机并结合声发射监测系统,研究不同温度循环作用后花岗岩的纵波波速及巴西劈裂破坏过程。结果表明:(1)随着温度循环次数的不断增加,2种冷却作用下花岗岩所对应的抗拉强度均逐渐降低,遇水冷却循环作用后花岗岩的抗拉强度要低于自然冷却状态下花岗岩的抗拉强度,且花岗岩在高温高循环次数下的劣化程度较为明显,当温度大于500℃时,花岗岩试样的表观颜色逐渐变为土黄色,试样逐渐由脆性向延性转化。(2)根据温度可以将花岗岩的破坏特征分为3个阶段,在低温阶段(100℃~200℃),试样均沿着巴西圆盘中心线发生破裂;中温阶段(300℃~400℃),试样沿着与直径呈一定角度破裂;高温阶段(500℃~700℃),试样破裂模式复杂,较为破碎。(3)低温阶段时的花岗岩随温度循环的变化其纵波波速、强度特征以及变形均变化较小;当试样处于中、高温度阶段时,随循环次数的增加其强度、波速等各项参数衰减幅度逐渐增大。研究结果可为地热开发中井筒破坏失稳及热储层岩体的破裂模式提供理论参考。  相似文献   

3.
三维应力下热破裂对花岗岩渗流规律影响的试验研究   总被引:1,自引:1,他引:0  
 采用“20 MN高温高压岩体三轴试验机”,精心设计4块完整花岗岩岩样。在25和75 MPa静水应力条件下,实时测试花岗岩岩样在热破裂作用下的渗流规律,这是国内目前首次对花岗岩在高温三维应力作用下渗流规律的实时试验研究。试验结果表明:(1) 在三维应力条件下,花岗岩发生热破裂。在热破裂升温过程中,花岗岩岩样的渗透率随温度的升高而表现为正指数增大的规律。(2) 在热破裂作用初期,花岗岩岩样渗透率随温度的增加而缓慢增加。在热破裂作用的后期,花岗岩岩样渗透率随温度的升高而急剧升高直至达到渗透率峰值。(3) 在整个热破裂升温过程中,各花岗岩岩样渗透率随温度升高而不断增加,渗透率变化率随温度的升高而不断加速。(4) 在静水应力和热破裂作用下,花岗岩岩样的渗透率峰值和初始值的比值最高可达93倍,其渗透率的变化率最高达3.5×10-4 mD/℃,热破裂作用极大地增强花岗岩的渗透特性。试验得到的数据和结论对高温岩体地热开发、石油二次开采及煤炭地下气化具有重要的意义。  相似文献   

4.
干热岩地热能作为一种绿色、可再生资源,其规模高效开发一直是世界性的研究热点。为解决完整干热岩地热EGS(enhanced geothermal system)开发所面临的热交换体积小、换热效果差等问题,深入研究深部天然干热岩体的裂缝分布特征。通过实地勘察发现,深层花岗岩体构造裂缝普遍会被热液或岩浆充填,形成裂缝后期充填花岗岩体。通过显微观测试验得出,受充填体高温作用影响,裂缝后期充填花岗岩热破裂裂缝数量随着距胶结界面距离的变化可分为裂缝数量平缓波动区、裂缝数量剧烈增加区和裂缝数量波动减小区。裂缝后期充填花岗岩主要产生长度大于50μm及长度大于100μm的微裂缝,且不同尺度裂缝数量最大值的位置皆位于距胶结界面一定距离的母岩中。当裂缝充填体厚度为3.4 cm时,裂缝充填体高温作用的单侧影响范围约为1 m。普遍赋存的裂缝充填体使花岗岩母岩形成巨大的弱面结构。通过水力压裂试验得出,弱面结构可成为水力压裂建造人工储留层的破裂通道,并且可大幅减小破裂压力,从而实现规模高效建造干热岩人工储留层。以此为基础研究干热岩地热开采中人工储留层建造新技术,即构成了干热岩地热开发的新的研究方向。  相似文献   

5.
为从高温岩体中提取热能,需向热能储层花岗岩层中施工深部钻孔,钻孔的稳定性将影响钻井施工的进展,但钻孔的稳定性又受其围岩变形的影响.因此,为研究高温高压下钻孔围岩的变形特性,利用中国矿业大学600 ℃ 20 MN伺服控制高温高压岩体三轴试验机系统,模拟研究4 000 m静水压力下,不同温度时钻孔施工过程中花岗岩体的变形特征,结果表明:(1) 恒温恒压下花岗岩体钻进过程中的变形呈现明显的蠕变特征,轴向和侧向变形均具有完整的初始蠕变和稳态蠕变;(2) 不同温度下钻进过程中花岗岩轴向和侧向变形量随温度的增加而增大,且存在温度阈值,为150 ℃~300 ℃;(3) 4 000 m静水压力下花岗岩体钻进过程中,300 ℃时开始出现明显的加速蠕变过程,500 ℃时产生蠕变破坏.  相似文献   

6.
我国花岗岩分布十分广泛,花岗岩岩体稳定性直接关系到其上部或内部构筑物的安全。目前,关于花岗岩在高温循环作用后物理力学性质变化规律研究较少,为研究高温循环作用对花岗岩岩体物理力学性质的影响,在对花岗岩进行高温—淬火循环(100~700 ℃,循环1~7次)处理后,对花岗岩岩样进行单轴压缩试验,分析其抗压强度与弹性模量变化规律;对花岗岩岩样进行巴西劈裂试验,分析其抗拉强度变化规律。结果表明:(1)在100~700 ℃范围内,随温度升高抗拉强度、抗压强度、弹性模量变化均呈现下降趋势,其中抗拉强度降幅不断加大、弹性模量和抗压强度降幅呈现由大到小再增大的趋势;(2)在循环1~7次范围内,随循环次数增加,抗拉强度、抗压强度、弹性模量均呈现下降趋势,变化幅度在10%以内;(3)抗压强度与弹性模量变幅波动均为V字形,且V字开口方向相同,其中,随温度升高V字开口向下、随循环次数增加V字开口向上。  相似文献   

7.
岩石的力学性质与渗透特性与应力,温度及渗透压力具有密切关系。运用Rock Top多场耦合试验仪对红砂岩进行100℃高温下不同静水压力与渗透压差条件下的温度–应力–渗流耦合试验研究。研究结果表明:(1)100℃高温下红砂岩全应力–应变经历裂隙压密→线弹性变形→微裂纹稳定发展→非稳定破裂发展→峰后变形与破坏5个阶段;(2)对应岩石应力–应变曲线,流量随应力差的增大呈现反向急速溢出段,反向稳定溢出段,急剧上升段,稳定增长段,此时渗透率随应力差的增大呈现先由初始值下降,保持水平常值,急速增长至伪峰值后衰落,稳定增长至真峰值等变化特征;(3)红砂岩在高温、高围压作用下的渗透率随围压的等梯度增长近似呈线性降低趋势,在高围压下渗透压差对渗透率影响并不明显,渗透率值趋于稳定,2种方法均显示红砂岩属于典型低渗类岩石;(4)相同围压与渗透压差下,瞬态法与稳态法2种渗透率测试方法所测结果相近,在30~60 MPa围压范围内,压力条件是影响渗透率的主要原因。  相似文献   

8.
高温静水应力状态花岗岩中钻孔围岩的 流变实验研究   总被引:4,自引:4,他引:0  
 采用自主研制的“20 MN伺服控制高温高压岩体三轴试验机”对f 200 mm×400 mm的内含f 40 mm钻孔的花岗岩体高温三维静水应力状态的流变特性进行了深入的研究。研究结果表明:(1) 花岗岩是由多种晶体胶结而成的脆性坚硬岩石,5 000 m静水应力以内及600 ℃以内的恒温恒压状态下,花岗岩中钻孔围岩主要表现为稳态蠕变;当应力达到5 000 m静水应力,温度为600 ℃时的蠕变为非稳态蠕变。(2) 高温静水应力状态下花岗岩中钻孔围岩蠕变过程存在应力阈值和温度阈值。(3) 热力耦合作用下钻孔围岩内部晶间胶结物及晶粒内部产生的位错及微破裂过程,是高温高压下钻孔围岩蠕变存在温度阈值和应力阈值的主要原因。(4) 高温静水应力状态下,含有钻孔的花岗岩体流变破坏的应力为5 000~6 000 m的静水应力(125~150 MPa),温度为500 ℃~600 ℃,破坏形式为压裂破坏、压剪破坏或两者相结合。同时,获得了600 ℃以内及埋深6 000 m以内静水应力条件下,不同温度不同埋深静水应力状态下花岗岩中钻孔围岩的蠕变率参数,为高温岩体地热开发钻井井壁稳定性研究提供了重要的力学参数依据。  相似文献   

9.
通过复掺纤维的活性粉末混凝土(RPC)高温试验,研究了复掺纤维的活性粉末混凝土高温物理变化及力学性能变化规律。试验结果表明,随着温度增加,RPC表观颜色经历青灰色→微褐色→棕褐色→深褐色→灰褐色→灰白色的变化,表观裂缝数量由少量→较多→大量,此物理变化可为RPC结构火灾现场过火温度判断提供参考。随着温度的升高,复掺纤维的RPC抗压强度、抗拉强度、抗折强度均先增大后降低,其中,抗压强度、抗拉强度、抗折强度的临界温度分别为300℃、100℃、100℃。钢纤维、聚丙烯纤维的复合掺入有效提高了RPC高温后相对抗压强度、相对抗拉强度、相对抗折强度,钢纤维掺量为2%、聚丙烯纤维掺量为0.1%时,RPC有着较好的抗压、抗拉、抗折强度,同时RPC高温力学性能得到增强。  相似文献   

10.
高温作用下花岗岩三轴蠕变特征的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用中国矿业大学的"20MN高温高压岩体三轴试验机",对Φ200mm×400mm大尺寸花岗岩试件在高温下的蠕变特征进行了试验研究。介绍了三维应力作用下花岗岩在高温条件下的蠕变试验方法和结果,结合理论与试验结果分析,发现了花岗岩在300℃时轴压94MPa围压75MPa时花岗岩经历蠕变的第一阶段和第二阶段,蠕变变形逐渐停滞,呈现明显的稳态蠕变的特征;在400℃,轴压125MPa围压100MPa时,呈现明显的非稳态蠕变特征。试验还揭示了花岗岩的蠕变性随温度和应力的升高而增强,蠕变性态转变的温度门槛值为300℃~400℃。试验结果对核废料的深埋处置长久安全性,地热能的长期稳定开发都有重要的指导意义。  相似文献   

11.
采用多功能岩石高温三轴实验机,通过实验对比分析花岗岩在实时温度和循环载荷作用下的单轴应力–应变特性,揭示温度与循环载荷对其力学特性的影响规律,研究表明:(1)实时温度下花岗岩的单轴抗压强度和弹性模量随温度升高总体呈下降趋势。极限应变随温度的变化规律呈"W"型,即25℃~200℃,极限应变随温度升高而降低;200℃~300℃,随温度升高而增大;300℃~500℃,随温度升高而降低;500℃~600℃,随温度升高而升高;(2)经应力循环后其弹性模量普遍提高,但温度不同提高的幅度不同,100℃时提高的幅度最小,400℃时提高的幅度最大,提高值主要发生在第2次应力循环,从第2~50次的应力循环中弹性模量的变化较小;(3)在25℃和600℃,花岗岩经有限的几次循环后便发生破坏,强度较应力循环前有所降低,而在其他温度点,经应力循环后其强度有不同程度的提高;(4)花岗岩在100℃和400℃温度条件下,经过50次应力循环后的极限应变值大于无应力循环的极限应变,其他温度点的变化非常微小。研究结果对涉及温度和循环应力同时作用下岩石类工程稳定性研究具有重要的理论意义和应用价值。  相似文献   

12.
高温三轴应力下无烟煤、气煤煤体渗透特性的试验研究   总被引:1,自引:3,他引:1  
利用自主研制的600℃20MN伺服控制高温高压岩体三轴试验机系统,分别研究大尺寸(φ200mm×400mm)晋城无烟煤和兴隆庄气煤试样在恒定500m原岩应力(侧压系数1.2)条件下不同温度时渗透特性的演化规律。结果表明:(1)在室温~300℃中低温段,煤体渗透率随温度的变化存在一个阈值温度。当温度达到阈值温度时,渗透率降至最低值。(2)在300℃~600℃高温段,煤体渗透率随温度的变化存在一个峰值温度,峰值温度处渗透率为该温度段内的最大值。(3)煤体渗透率随温度的变化呈现阶段性:室温至阈值温度为第一阶段,渗透率随温度的增加而降低;阈值温度至峰值温度为第二阶段,渗透率随温度的升高而增加;高于峰值温度后,渗透率随温度的增加而降低。(4)渗透率随温度变化的阈值温度和峰值温度与煤阶有关。无烟煤渗透率的阈值温度是150℃~200℃,峰值温度为450℃~500℃,而气煤渗透率的阈值温度为200℃~250℃。  相似文献   

13.
利用自主研发的真三轴岩爆试验系统,以200℃~700℃不同高温冷却后和常温25℃下的红色粗晶花岗岩作为岩样,进行岩爆弹射破坏过程模拟物理的试验。在借助高速摄像系统和声发射系统监测岩爆过程的基础上,分析了不同高温作用后岩样的岩爆弹射过程、破坏形态特征、峰值强度、声发射特性、碎块特征以及弹射动能的变化规律。研究结果表明:随着温度的升高,岩样从出现小颗粒弹射到整体弹射破坏的时间间隔逐渐减少;300℃为该类花岗岩高温后单面临空真三轴强度的阀值温度,小于等于300℃时,岩样的峰值强度变化不大,岩样脆性随温度的升高而增大,大于300℃时,岩样的峰值强度呈明显下降趋势,岩样的脆性随温度升高而降低;在岩样压密阶段,声发射撞击数随温度升高而增大,大于300℃时,岩爆发生前夕声发射撞击数显著下降的“平静期”持续时间随温度升高呈增大趋势;25℃~300℃温度范围内,岩爆弹射动能随温度升高明显增大,300℃~700℃高温后,岩爆弹射动能随温度升高显著减小。  相似文献   

14.
高温及三轴应力下花岗岩体力学特性的实验研究   总被引:6,自引:3,他引:3  
高温岩体地热开发及核废料的地下处置等需要对高温高压下花岗岩体的力学行为进行深入细致研究.采用自主研制的"20 MN伺服控制高温高压岩体三轴试验机",投入大量人力、财力和物力,历时0.5 a,系统深入地研究φ200 mm×400 mm的大尺寸花岗岩试样在高温三轴应力下的热变形和破坏特征及其热学和力学参数随温度的变化特征.研究结果表明:(1)在三维静水应力下,花岗岩的热变形可分为低温缓慢变形段、中高温快速变形段及高温平缓变形段等3个阶段.自由状态测定的热膨胀系数会过分夸大,或失真地估计岩石的热膨胀或热力作用,在应力状态下测定的热膨胀系数更能反映实际岩体状态.(2)在高温三轴应力条件下,花岗岩体受压表现出与常温下不一致的变形特征,即先是体积膨胀,当差应力超过一定值后则体积收缩.(3)花岗岩体在高温下的破坏形式是典型的剪切破坏,与常温下的破坏形式一致,但在高温和高围压条件下出现明显的延性转化.(4)在有围压条件下,花岗岩体的弹性模量随温度升高先是缓慢减小,然后快速减小,超过400℃后基本保持不变,与小试件的情况相似.  相似文献   

15.
为实现深部高温矿井围岩地热资源的高效化利用与精准化产能评估,开展接触型花岗岩裂隙的渗流–传热试验研究。测量天然裂隙在不同法向应力作用下的接触率,制备具有接触凸起的岩芯裂隙试件,研究接触裂隙的渗透性质和对流传热性质在不同温压条件下的演变规律,并通过引入有效换热面积改进传统对流换热系数评估模型。试验结果表明,接触裂隙的等效水力开度随围压的衰减程度受接触率控制,反映了非均质裂隙渗透性质对围压的不均匀响应过程。接触裂隙的闭合变形对围压响应程度不同,导致等效渗透率随接触率的增加在高围压状态下表现出先增加后的下降趋势,而在低围压状态下表现为单调减小趋势。同一水压力梯度下,高温裂隙的累计产热量随着接触率的增加首先增加,然后降低。改进的对流换热系数模型表明裂隙的对流换热系数与接触率表现出正相关关系,而传统理论模型无法刻画这一演变特征。忽略天然接触特征将导致高温裂隙的对流换热系数被低估,且低估程度随着接触率的增加而增加。此外,基于改进模型获取的对流换热系数与体积流量之间并不严格遵循幂律相关关系,依赖流量对裂隙换热系数的估计效果需要进一步提升。  相似文献   

16.
采用中国矿业大学的20 MN高温高压岩体三轴试验机进行了高温三维应力下大尺寸Φ200 mm×400 mm鲁灰花岗岩蠕变特性的实验研究,温度最高达到了600℃,轴向应力最高达到了175 MPa。通过对实验数据的分析,发现高温三维应力条件下静水应力引发鲁灰花岗岩发生蠕变变形,提出了考虑静水应力作用时稳态蠕变率的本构方程,得到了鲁灰花岗岩蠕变本构方程的参数A1,A2,?Q,m,n。研究还发现静水应力下的蠕变和差应力下的蠕变曲线特征相同,同样可以划分为初始蠕变阶段、稳态蠕变阶段和加速蠕变阶段三个阶段,鲁灰花岗岩的蠕变变形是温度,差应力和静水应力的函数,温度、差应力和静水应力的升高都会加速鲁灰花岗岩的蠕变变形。更多还原  相似文献   

17.
陈华强  祁士华 《矿产勘查》2023,14(12):2352-2365
广东惠州市黄沙洞地热田位于中国大热流异常区的东南沿海区。2013年首次在该地区钻探发现广东省内温度最高地热井,地热井井口自流水温98.2℃,井底测得最高水温118.2℃。2018年施工的惠热1#于2900 m测得热水温度为127.7℃,井口最高稳定温度118℃,最大流量137 m3/h。深部热储温度采用无蒸汽损失石英温标计算为142.4℃,指示地热资源成藏潜力巨大。本文为探究该地区高温地热成因,结合区域地质构造特征、地球物理信息、岩石地球化学、气体地球化学、深部钻探信息,提出了高温地热区深部潜在地幔物质上涌现象为主要控制因素。研究区处于高重力异常区的北缘,处在线性重力阶梯带上,航磁异常显示深部存在隐伏岩体。高温地热井周边深部软流圈出现一定面积的垂向带状高导低阻体异常,反映可能有大规模的地幔上涌现象,且存在有较高的壳幔热流值,中下地壳可能存在热扰动的地质结构,紫金—博罗及莲花山深大断裂对软流圈的隆起具有一定的控制作用。研究区花岗岩多数显示为变杂砂岩部分熔融,少数为角闪岩和变安山岩部分熔融,指示研究区花岗岩存在地幔物质的加入。研究区浅层地下冷水稀有气体的比值R/Ra(...  相似文献   

18.
3种岩石高温后力学性质的试验研究   总被引:7,自引:13,他引:7  
通过单轴压缩试验,对不同高温后熔结凝灰岩、花岗岩及流纹状凝灰角砾岩的力学性质进行了研究,分析比较3种岩石峰值应力、峰值应变及弹性模量随温度的变化规律,并研究了峰值应力与纵波波速、峰值应变与纵波波速的关系。试验升温等级设为20℃,200℃,400℃,600℃,800℃五级,升温速度为30℃/min。试验结果表明,高温后3种岩石的峰值应力、弹性模量均有不同幅度的降低,且经历的温度越高,降低的幅度越大。对于峰值应变,熔结凝灰岩、花岗岩的峰值应变随温度的升高而大幅度的增加:但对于流纹状凝灰角砾岩,峰值应变随着温度的升高在降低。此外,峰值应力与纵波波速、峰值应变与纵波波速的关系依赖于不同的岩石而表现出不同的规律。  相似文献   

19.
花岗岩高温后的超声特性及力学性能研究   总被引:2,自引:0,他引:2  
采用RSM-5N非金属超声检测分析仪和液压伺服试验系统装置,研究了不同温度等级(25~1 000 ℃)作用后花岗岩的超声特性以及力学性能。结果表明:(1)高温后花岗岩的纵波波速、波幅,波形以及单轴抗压强度都和温度的变化密切相关。(2)随着温度等级的增高,纵波波速100 ℃之前先是增加,100 ℃之后开始减小,高温后波形和波幅整体上由整齐变混乱,尤其在600 ℃变化最明显。(3)随着温度的增加,花岗岩试样逐渐由灰褐色变成灰白色,同时质量也随着温度的增加而减小,试样脆性增加,变得轻脆易碎。(4)400 ℃之前花岗岩单轴抗压强度随着温度的增加变化不明显。但是经历400 ℃之后,强度开始随温度等级的下降而下降,经历过1 000 ℃高温后的抗压强度降低到25 ℃的37%左右。  相似文献   

20.
探究高温循环下岩石内部孔隙演化及其对物理力学特性的影响,对核废料地质处置、地热开发等地下工程的长期稳定性分析具有重要意义。为了定量分析高温循环对花岗岩孔隙结构及物理力学性质的影响,综合利用扫描电镜、差热分析等方法研究25℃~800℃高温循环下花岗岩的表面特征、质量、体积、纵波波速、抗拉强度、孔隙度、孔径分布和微观结构等演化规律。研究结果表明:(1)随着温度升高,花岗岩的表面裂纹、色差、质量损失率、体积膨胀率、纵波波速衰减率不断增加,抗拉强度逐渐减小,当T>500℃后,花岗岩的物理力学参数变化显著,在5次热循环后,岩石物理力学参数的变化更加明显。(2)高温能够促进花岗岩孔隙发育,岩石内部微、小孔隙逐渐生长并连通形成中、大孔隙,造成岩石孔隙连通性增强,且热循环会进一步增加孔隙结构之间的连通性,导致中孔和大孔占比上升,孔隙率进一步增大。(3)高温循环下花岗岩物理力学性质劣化与其内部孔隙结构的变化密切相关,质量损失率和体积膨胀率随等效平均孔隙半径的增大呈线性增加,纵波波速和抗拉强度随等效平均孔隙半径的增大呈指数型增加。(4)高温下花岗岩会发生脱水、石英相变、矿物氧化、化学键断裂等物理化学...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号