首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对电动汽车充电无线电能传输(WPT)系统的网络补偿技术,研究了一种LCC-LCC/S型变结构补偿网络.通过开关控制,能够将松耦合变压器的原/副边补偿网络由恒流源-恒流源特性,切换为恒流源-恒压源特性,从而实现变化负载工况下的恒流或恒压输出,用以满足动力电池的充电需求.针对变结构切换过程中硬开关能量冲击导致的高电压应力...  相似文献   

2.
为了减少基于感应电能传输技术的变补偿拓扑充电系统的开关器件和无源元件数量,同时保证系统恒压充电时有相对较高的效率,该文基于串/串并补偿拓扑,在副边电路增加一个交流开关和一个附加电容,通过切换开关的关断改变副边串联补偿电容,从而实现系统的恒流恒压切换。该方法无需原副边通信及复杂的控制电路,系统结构简单,所需元件较少。在恒流模式充电阶段系统输入阻抗呈感性,能实现零电压开关;在恒压模式充电阶段输入阻抗为纯阻性,几乎没有无功功率输入。实验结果表明,所提出方法的输出恒流和输出恒压在电池等效负载变化的同时有细微的波动,但实验结果仍然满足对电池充电的要求;此外,系统恒流时最高效率为92.2%,恒压时最高效率为94.2%。  相似文献   

3.
为了满足电动汽车电池先恒流后恒压充电的需求,根据补偿网络工作的特性,结合充电安全性的要求,设计了基于LCC-LCC/S混合补偿网络的无线充电系统方案.在恒流充电模式下,副边采用LCC补偿拓扑.在恒压充电模式下,副边采用串联补偿拓扑.在此基础上,针对静态充电技术中容易出现两侧线圈偏移的问题,提出了根据原边逆变器输出电流和...  相似文献   

4.
为了减少混合谐振式无线充电系统的开关器件和无源元件数量,提高系统输出功率,同时简化原、副边的控制策略,提出一种基于LCL-LCL/S混合自切换谐振式无线充电系统,无需原、副边通信和增加任何无源元件,仅通过LCL结构的自投切操作更改拓扑网络来实现无线充电系统恒流恒压的切换。首先,依靠T型网络分析恒流或恒压输出与输入阻抗呈纯阻性的关系;然后,引入混合型补偿网络数学模型,分析实现系统输入电流和电压之间零相角(ZPA)与恒流或恒压输出特性的参数配置条件;接着,依据蓄电池充电曲线特征、谐振电流阈值、电压跳变阈值和耦合系数变化约束,进一步提出一种适用于混合谐振式拓扑网络参数优化的设计方法,在避免谐振网络参数经验选值的局限性导致参数不确定性问题的同时,也为参数选取提供了理论依据;最后,搭建实验平台验证该方案的可行性与有效性。实验结果表明,优化谐振网络参数的无线充电系统具有较好的恒流恒压输出特性,系统最大传输效率为81%,完全满足恒流恒压无线充电需求。  相似文献   

5.
在电动汽车无线充电的过程中,恒流模式需要快速、稳定地切换到恒压模式以保障电池和电动汽车的安全,这往往需要原、副边之间的通信及原边复杂控制方法的介入。文中提出了一种免去原、副边之间的通信,且不需要原边提供控制手段,仅在副边自动切换谐振补偿网络即可完成恒流充电模式向恒压充电模式的快速切换的方法,同时提出了副边谐振补偿网络参数的设计方法,保证了切换过程中电池充电电压的稳定性。以LCC-LCC向LCC-S谐振补偿网络切换为例,对所提出的设计方法进行了分析和验证。实验表明,应用所提出的方法,输出的电流和电压随着电池等效负载的改变而保持恒定,且切换过程平滑稳定,结果满足电动汽车充电的要求。  相似文献   

6.
针对感应电能传输(inductive power transfer,IPT)无线充电系统中恒压或恒流输出的相互转换问题,基于LCL/S拓扑电路,提出含变结构中继谐振回路的恒压恒流无线充电系统,利用2个相互解耦的DD型线圈作为中间线圈,与谐振电容器形成谐振回路,使用2个交流开关用于系统充电模式的切换,实现独立于负载的恒流...  相似文献   

7.
针对充电拓扑存在开关工作频率范围过宽的问题,提出了一种适用于蓄电池充电的IPOS双LLC谐振变换器,并针对其恒压恒流输出特性展开了研究。所提变换器包含两组LLC谐振腔,通过辅助开关管S的开闭改变其中一组谐振电容参数,从而实现变换器的恒压和恒流输出转换。恒压恒流模式下所提变换器均定频工作:在恒压模式(S闭合),两组谐振腔工作在LC串联谐振点处;在恒流模式(S断开),一组谐振腔工作在LLC谐振点处实现恒流输出而另一组仍恒压输出。所提变换器实现软开关的同时实现了原边开关管和副边整流二极管的复用,并详细介绍了其工作原理、电压电流增益、设计方法和控制方案。最后,通过实验和仿真验证了所提变换器的可行性。  相似文献   

8.
该文提出一种变结构LC-CLCL拓扑电场耦合电能传输(electric-field coupled power transfer,ECPT)系统,可实现负载变化下的恒压或恒流输出,对电池类负载的稳定充电具有重要意义。首先,给出LC-CLCL补偿ECPT系统的基本结构及切换策略,并建立等效数学模型;然后,分析恒流、恒压及空载模式下的系统特性,建立恒压恒流实现条件,且能保证系统负载切除时自动进入低功耗状态,此基础上,给出系统参数设计方法;最后,搭建仿真和实验系统,在输入电压恒定情况下,实现1A的恒流输出,50V的恒压输出,验证所提方法的有效性和正确性。  相似文献   

9.
电动汽车无线充电混合补偿拓扑电路分析   总被引:2,自引:1,他引:1  
无线电能传输补偿方式直接影响输出电流、电压的增益特性,提出一种混合补偿拓扑电路,解决负载动态变化时输出电流、电压不稳定的问题,可应用于电动汽车恒流恒压无线充电电路。对拓扑电路原副边线圈建立等效松耦合变压器T模型,分析得出等效负载动态变化时可以实现恒流恒压输出的特性。构建仿真模型和试验台架,仿真验证电路分析的正确性。实验验证了在串/并补偿拓扑下副边稳流输出且原边逆变电流滞后电压,在串/串并补偿拓扑下副边稳压输出且原边逆变电流与电压同相。  相似文献   

10.
为减少无线电能传输(WPT)电池充电系统的开关器件和无源元件数量,简化控制的复杂度,此处基于串/串(S/S)补偿的拓扑,提出通过切换两个固定工作频率实现电池的恒流恒压(CC-CV)充电,当运行于其中一个固定频率时,实现与负载无关的CC输出,运行于另一个固定频率时,实现与负载无关的CV输出,并给出了具体的参数设计方法来提...  相似文献   

11.
为了简化感应电能传输(inductive power transfer,IPT)电池充电系统原边与副边电路的设计和控制复杂性,该文提出通过在原边电路加入一个附加电容和一个半导体开关的方法实现对电池恒流恒压切换充电,无需调节逆变器直流输入电压、原边移相控制及副边加入调压电路。恒流模式时,配置的补偿电容完全补偿原边线圈;恒压模式时,只需一个开关切出或者切入附加电容。该方法只需简单的通信(用于充电模式切换),没有复杂的控制策略,结构简单,成本低。实验表明,所提出方法输出的恒流和恒压随着电池等效负载电阻改变而轻微变化,但结果仍然满足电池充电要求。  相似文献   

12.
目前多种动力蓄电池凭借着能量密度高、续航里程长和可循环使用等优势,在新能源汽车领域得到了广泛应用。针对当前以谐振电路为基础构建复合变换器应用于蓄电池充电存在输出电压范围、模式间切换、效率等不同问题,提出了一种四开关Buck-Boost与电容钳位LLC级联复用式变换器作为充电电路。该电路增益曲线的容性区和感性区均可工作,宽调频范围的容性区具有恒流特性,感性区的最佳谐振点具有恒压特性,利于实现蓄电池恒流恒压充电控制。频率与占空比的解耦控制拓宽了变换器的输出电压范围,且负载阻抗连续变化下电压增益连续,利于实现蓄电池恒流恒压平滑切换及满足不同电池充电控制方案,宽增益下的宽调控范围可减少输出纹波。拥有桥臂间移相软开关、复用桥臂增强软开关能力和降低通态电流、变压器低磁链及最终移动于最佳谐振点工作等电路特性,利于实现电能高效传输。仿真与实验结果验证了充电电路全程满足ZVS、ZCS的恒流恒压控制及充电模式间平滑切换特性。  相似文献   

13.
为了减少感应式无线充电系统增加的额外电路和控制成本,取消初级侧和次级侧之间的通信,该文提出仅需增加一个额外电容和一个开关器件在次级电路的方法,即可实现对电池恒流恒压切换充电。该方法无需初级和次级电路进行通信或增加DC-DC变换器,降低了整个系统的成本和复杂性。首先分析得到感应式无线充电系统的电流和电压增益,接着通过设计电路中元件参数值使得电流和电压增益与负载无关,最后合理配置电路参数,通过切换开关即可实现恒流和恒压切换输出。实验表明,所提出的方法在恒流和恒压模式下,系统的恒流充电电流和恒压充电电压略微受到电池等效负载改变的影响,但是结果仍然满足对电动自行车的充电要求。  相似文献   

14.
LLC谐振变换器开关频率高,具有较高的控制准确度和功率密度,加上拓扑结构简单,是适合蓄电池充电控制的一种有效拓扑。蓄电池充电控制需要多种充电模式且各模式之间能自动进行切换,输出的电压电流准确度、纹波大小要满足一定要求。针对此要求,通过理论分析、仿真和样机测试进行专门研究,主要工作:①设计了恒压充电、恒流充电和浮充电等充电模式,并实现快捷平滑切换;②采用双单环PI算法,控制策略考虑并机工况;③对浮充电(空载/轻载)进行专门设计,提高全程性能。搭建了仿真模型和一台800 W实验样机,仿真和实验结果均表明,LLC谐振变换器在15 ms内输出即可达到给定值,可自动切换模式对蓄电池充电,空载时仍可稳定输出电压,并机均流度较好。  相似文献   

15.
为满足电池在无线充电过程中所需要的先恒流输出后恒压输出的充电需求,该文从电路本质特性出发,基于LCL谐振补偿网络结构,提出一种通过切换副边的谐振补偿网络参数完成恒流充电模式向恒压充电模式的自动切换方法。所提出的方法可以免去原、副边之间的无线通信,且不需要改变原边的输入电压和频率。该文以谐振补偿网络两个电感比值α=1条件下的LCL型谐振补偿结构为例,对所提出的设计方法进行了分析和验证,搭建了一套实验平台,实现了线圈距离在20cm条件下,输出功率为1k W,效率为92%,恒流输出为5V,恒压输出为205V的WPT系统。实验表明,应用所提方法,能够实现电池在无线充电的过程中先恒流输出后恒压输出的充电需求,且切换过程自动、稳定。  相似文献   

16.
目前的无线供电应用中多采用锂电池作为负载,无线充电器应提供电池所需的先恒流后恒压输出,其中恒流与恒压的切换多依赖后级变换器、复合拓扑或高阶网络来实现,控制复杂,可靠性差.为解决该问题,文中提出了一种可自适应电池充电曲线的三线圈电池无线充电系统,该系统通过在原边侧增加辅助线圈和无源整流桥,实现恒流与恒压模式的自动切换,不...  相似文献   

17.
恒流(CC)和恒压(CV)充电是锂电池的两种主要充电方式,但随着电池等效电阻在充电过程中逐渐非线性增大,无线充电系统要同时保持独立于负载的CV和CC充电模式面临着巨大的挑战。针对锂电池无线充电系统,提出了一种新型的LCCC/S拓扑结构,所提方法不仅能实现独立于负载的CV和CC充电,且在此两种充电模式下实现输入电流和输入电压零相位角;而且仅需两个开关互补控制,能在恒频下实现两种模式切换。最后,建立了在CC充电模式下3 A CC输出和在CV充电模式下48 V CV输出的验证装置,验证了所提LCCC/S补偿无线电能传输系统的可行性和合理性。  相似文献   

18.
针对水平偏移与电池充电时输出功率可控性较弱的问题,提出一种可重构无线充电系统WCS(wireless charging system)。通过合理地切换传能通道,实现互感与负载较宽范围变化时恒流/恒压充电和全桥逆变器软开关ZVS(zero voltage switching)状态。首先,分析系统电路拓扑,推导系统参数与充电电流/电压、ZVS状态之间关系式,据此阐释系统重构与功率可控的合理性;其次,构造交叠线圈式磁耦合机构MCSC(magnetic coupler with sandwich coils),分析其水平偏移性能,为系统高偏移容忍度的设计提供依据;第三,分析WCS的工作流程,设计的闭环控制器实现了较宽偏移与负载波动时恒流/恒压充电、ZVS状态;最后,搭建旋翼无人机用WCS,实验结果表明,最大输出功率为126 W且系统效率大于85%时,水平偏移范围为直径340 mm的圆形区域。  相似文献   

19.
研究了基于Zeta/Sepic双向变换器的光伏半导体发光二极管(LED)照明系统,提出一种充电控制算法,其既能实现太阳能电池的最大功率点跟踪(MPPT)又能满足蓄电池电压限制条件和浮充特性;设计一种基于HV9930控制芯片的LED恒流驱动电路。构建实验系统,测试表明,控制器可以根据蓄电池状态准确地在MPPT、恒压、浮充算法之间切换,MPPT充电效率较恒压充电显著提升,LED驱动电路恒流效果好。  相似文献   

20.
感应式电能传输技术IPT(inductive power transfer)应用到电动汽车中具有许多独特的优点。由于IPT变换器输出特性复杂,与变压器参数、补偿参数、工作频率和负载均有关,而电池在整个充电过程中负载变化范围宽,故IPT变换器难以直接提供负载电池所需的充电电流或电压。针对此问题,根据4种基本的IPT补偿结构的输入和输出特性,找到可同时实现输入纯阻性和输出恒流或恒压的拓扑结构及工作条件,从而解耦负载对输出的影响,消除无功功率。但单个拓扑无法满足电池先恒流后恒压的充电特性,因此进一步提出了一类复合拓扑结构,采用最少的器件实现恒流拓扑和恒压拓扑的切换,电路简单可靠,传输效率高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号