首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为开发出对放射性废液中长寿期活化产物具有高效选择性的吸附剂,在室温下制备了金属-有机框架(MOFs)材料ZIF-67,并对该材料进行了热稳定性测试以及结构的表征。首次考察了初始pH值、吸附时间和溶液初始浓度等因素对ZIF-67吸附Co(Ⅱ)和Mn(Ⅱ)的影响。结果表明:ZIF-67属于微孔材料,具有良好的水热稳定性。在pH为6.0、温度为30℃、初始浓度为500 mg/L的条件下,ZIF-67对Co(Ⅱ)和Mn(Ⅱ)的饱和吸附容量分别达到305.63 mg/g和197.43 mg/g。ZIF-67在混合金属离子溶液中对Co(Ⅱ)、Mn(Ⅱ)和Ni(Ⅱ)具有良好的选择吸附性能。因此,ZIF-67在实际放射性废液中活化产物的处理中有良好的应用前景。  相似文献   

2.
针对含低水平放射性过渡金属离子废水的处理需求,本工作以Co(Ⅱ)为代表,研究了粉煤灰衍生介孔硅钙材料对Co(Ⅱ)的吸附去除性能。研究结果表明,高铝粉煤灰“预脱硅-碱石灰烧结提铝”工艺在预脱硅阶段产生的硅钙材料副产品,以水化硅酸钙(C-S-H(Ⅰ))(钙硅原子摩尔比n(Ca)/n(Si)=0.98~1.00)为主要矿相,属于具有高比表面积(733 m2/g)且孔隙发达的介孔材料,同时,其具有良好的酸碱缓冲性能(pH=2~10)以及一定的阳离子交换性能(Ca2+/H+)。介孔硅钙材料在35~60℃对Co(Ⅱ)吸附容量最高可达209~296 mg/g,整个过程符合Langmuir单分子层化学吸附,为吸热反应,吸附可在3 h内快速达到平衡,吸附机理主要为离子交换(占84.5%)。而对实际核电站大修废水的吸附试验结果表明,对其中的放射性Co(Ⅱ)去除率大于98.6%,并且其他放射性过渡金属离子也得到去除。在当前放射性核素的水泥固化处置中,介孔硅钙材料不仅与水泥有较高的相容性从而实现放射性核素的高效稳定化,同时还可替代部分水泥从而实现固化产物的减量化,具有较好的环境和经济效益,因此,该介孔硅钙材料在放射性废水核素去除方面具有较大的资源化应用潜力。  相似文献   

3.
通过水热法制备了磁性MOFs材料Fe3O4@SiO2@UiO-66-SO3H,并利用红外光谱仪(FT-IR)、X射线衍射仪(XRD)、比表面积测试(BET)、振动样品磁强计(VSM)、X射线光电子能谱仪(XPS)等对材料结构、形貌和性能进行表征。考察了溶液pH值、时间、温度、Co(Ⅱ)初始浓度对Fe3O4@SiO2@UiO-66-SO3H吸附性能的影响。结果表明,在pH=8.3、温度为298 K下,Fe3O4@SiO2@UiO-66-SO3H对Co(Ⅱ)的理论最大吸附量为106 mg/g;吸附过程符合准二级动力学模型和Langmuir等温模型,吸附是一个自发的吸热过程。Fe3O4@SiO2@UiO-66-SO3H在外加磁场下易从水溶液中分离,5次循环后仍具有较强的吸附性能。  相似文献   

4.
本文采用溶剂热法合成了微孔结构的锆基金属-有机框架(MOFs)材料Zr-CAU-24,该材料比表面积为1 610 m2/g。对所合成的Zr-CAU-24进行了热重分析(TGA)和辐照稳定性测试,考察了接触时间、初始pH值等对Zr-CAU-24对Th(Ⅳ)和Ce(Ⅳ)吸附性能的影响,并探讨了Zr-CAU-24对Th(Ⅳ)和Ce(Ⅳ)吸附过程的动力学和热力学。结果表明:Zr-CAU-24具有良好的热稳定性和辐照稳定性;准二级动力学模型为Th(Ⅳ)和Ce(Ⅳ)在Zr-CAU-24上的吸附过程提供了很好的解释,即该过程为化学吸附过程;Zr-CAU-24活性位点分布均匀,为单层吸附;混合金属离子溶液吸附研究发现,Zr-CAU-24对Th(Ⅳ)和Ce(Ⅳ)具有吸附选择性。  相似文献   

5.
利用共沉淀法制备了亚铁氰化锌配合物(KZnFC),采用静态法研究了温度、pH值、吸附时间、Co2+初始浓度等因素对Co(Ⅱ)在KZnFC上吸附性能的影响,同时研究了KZnFC重复利用的可能性,从热力学和动力学方面对吸附过程进行了分析,并通过KZnFC吸附Co(Ⅱ)前后的透射电镜(TEM)、全谱等离子体直接光谱仪(ICP)和X射线衍射分析(XRD)对吸附机理进行了初步探讨。实验结果表明:pH值和Co2+初始浓度对吸附过程有显著影响;在25℃、pH=5.5、吸附平衡时间为300min时KZnFC的平衡吸附量Qe=38.53mg/g;KZnFC经过HCl和KCl溶液解吸后具有较好的重复利用性能。KZnFC对Co(Ⅱ)的吸附过程符合Langmuir吸附模型和假二级反应动力学模型。KZnFC吸附Co(Ⅱ)前后的ICP和XRD分析表明,该吸附过程是以样品中K+与溶液中的Co2+发生离子交换为主,吸附后样品晶格常数发生改变,影响了晶体的择优取向。  相似文献   

6.
合成了一种BiCuSO基新型材料,通过批次实验探究pH、振荡时间、初始U(Ⅵ)浓度、温度对吸附铀的影响。结果表明,当pH=6.5、t=120min时吸附效果最佳,最大吸附量可达572.6mg/g(ρ0(U(Ⅵ))=1 000mg/L)。通过动力学及热力学模拟可得,该吸附符合准二级动力学及Freundlich等温吸附模型,且在不同温度下ΔG<0,表明反应为自发反应。此外,利用X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)等表征手段对吸附前后的样品进行了表征,探究了其中的吸附机理,为寻求新材料处理放射性废液中的铀提供了理论支撑。  相似文献   

7.
采用聚丙烯中空纤维膜开展直接接触式膜蒸馏(DCMD)过程处理模拟放射性废液的研究,主要考察了料液温度、冷却水温度、料液流速以及冷却水流速的变化对膜通量和目标元素(Sr(Ⅱ)、Co(Ⅱ)和Cs(Ⅰ))截留效果的影响,并探讨了DCMD过程的传质传热机理。考察的四个运行参数中,料液温度的变化对膜通量的影响最大,料液温度由40℃增加至80℃,膜通量由2.7L/(m2·h)增加至29.2L/(m2·h)。此DCMD过程中,水蒸气在膜孔内的传质机理以努森-分子扩散为主,传质阻力主要来自于膜本身。在考察的料液温度(40~80℃)、冷却水温度(10~30℃)、料液流速(425~1 450mL/min)和冷却水流速(75~600mL/min)范围内,DCMD过程对Sr(Ⅱ)、Co(Ⅱ)和Cs(Ⅰ)的去污因子(DF)均保持在105以上。结果表明:DCMD过程对模拟放射性废液具有良好的处理效果,可作为一种新的放射性废液处理技术。  相似文献   

8.
何江  高飞  张峰  冯峰  石仕泷  刘军 《核技术》2021,44(4):33-42
合成了一种ZIF-8负载柠檬酸包覆的纳米零价铁复合物(nZVI@CA/ZIF-8),并研究了其对U(VI)的吸附性能和机理.研究表明:nZVI@CA/ZIF-8对U(VI)的吸附量随着初始pH、U(VI)初始浓度和温度的升高而增大,在较高钠离子浓度(0.5 mol?L-1)条件下依然保持较好的吸附U(VI)性能.在铀初...  相似文献   

9.
选用葡萄糖为炭源,在180℃下反应36h得到水热炭(HTC),后经热处理、胺化和接枝紫脲酸铵合成了一种新的水热炭基吸附剂(Mu-HTC)。通过Boehm滴定分析,热处理后的水热炭表面羧基含量增加近六倍;红外光谱分析证实紫脲酸铵被成功接枝在水热炭上;扫描电镜监测整个合成过程,水热炭球的形貌和粒径没有发生显著变化。根据Langmuir等温吸附方程,该吸附剂对铀(Ⅵ)理论吸附容量为102.05mg/g。在模拟放射性废液的共存离子竞争吸附中,对铀(Ⅵ)的吸附容量占总吸附容量的72.8%,具有较好的选择性。该吸附剂可用于含铀废水的净化处理或从水体中回收铀资源。  相似文献   

10.
冻融法合成Sr高效吸附剂硅钛酸钠   总被引:2,自引:0,他引:2  
"冻融法"合成了高效除Sr吸附剂。经扫描电镜(SEM)、差示扫描量热仪(DSC)和热重分析(TG)等分析方法对吸附剂进行了形貌及成分表征。考察了吸附剂硅钛酸钠对非放射性模拟废液中Sr的去除能力,验证了硅钛酸钠对放射性废液中90Sr的深度净化能力。实验结果显示,合成的硅钛酸钠对废液中Sr的吸附效果十分出色,在室温、pH=13的条件下,硅钛酸钠对非放模拟废液中Sr的吸附Kd值超过105 mL/g;同时所制备的吸附剂具有极强的耐盐性。"冻融法"制备吸附剂过程简单、产量大,适于工业化生产。  相似文献   

11.
采用共沉淀法制备了镁铝水滑石,并利用XRD、FT-IR和SEM对材料进行了表征。在此基础上,系统研究了不同焙烧温度、初始pH值、振荡时间、初始I~-浓度等对焙烧态镁铝水滑石吸附I~-性能的影响。结果表明:500℃焙烧条件下所制备的镁铝水滑石CLDH-500对I~-的吸附性能最优。在初始I~-浓度为500mg/L、初始pH=6.0的条件下,8h达到吸附平衡,最大吸附容量为217.22mg/g。对吸附过程用准一级、准二级动力学模型和粒内扩散模型模拟。结果显示,其吸附过程符合准一级动力学模型和粒内扩散模型(R~20.96);Langmuir模型拟合结果(R~20.99)显示,I~-在CLDH-500上为单分子层吸附。该研究结果可为放射性废液中I~-的去除提供技术和理论支持。  相似文献   

12.
采用Hummers方法和化学共沉淀方法,合成了磁性氧化石墨烯(M/GO)材料,并以此作为吸附剂材料,采用静态批式实验方法研究了其对Co(Ⅱ)的吸附去除机理。结果显示M/GO具有良好的饱和磁场强度,易于利用外加磁场实现吸附后的固-液分离。Co(Ⅱ)在M/GO表面的吸附几乎不受背景离子强度的影响,而受pH的影响显著。其吸附可快速达到平衡,吸附动力学符合准二级速率方程。升高温度可有效促进吸附。吸附等温过程符合Langmuir模型。热力学参数的分析表明Co(Ⅱ)在M/GO表面的吸附为自发吸热过程。  相似文献   

13.
采用Hummers方法和化学共沉淀方法,合成了磁性氧化石墨烯(M/GO)材料,并以此作为吸附剂材料,采用静态批式实验方法研究了其对Co(Ⅱ)的吸附去除机理。结果显示M/GO具有良好的饱和磁场强度,易于利用外加磁场实现吸附后的固-液分离。Co(Ⅱ)在M/GO表面的吸附几乎不受背景离子强度的影响,而受pH的影响显著。其吸附可快速达到平衡,吸附动力学符合准二级速率方程。升高温度可有效促进吸附。吸附等温过程符合Langmuir模型。热力学参数的分析表明Co(Ⅱ)在M/GO表面的吸附为自发吸热过程。  相似文献   

14.
采用60Co-γ预辐射接枝法将丙烯酸和丙烯酰胺先后接枝于超高分子量聚乙烯纤维上,随后用羟胺碱溶液对纤维进行氧肟化改性,制备出含氧肟酸基、酰胺基和羧基的超高分子量聚乙烯纤维吸附剂。扫描电子显微镜(SEM)图、傅里叶变换衰减全反射红外光谱(ATR-FTIR)谱图和热重曲线均表明,丙烯酰胺和丙烯酸成功接枝到纤维上,且氧肟化反应成功将酰胺基转化为氧肟基。重金属离子吸附性能测试结果表明:所制备的超高分子量纤维吸附剂对Cu(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ) 3种重金属离子吸附容量最高可达到318 mg/g、165 mg/g、140 mg/g(吸附质量浓度为500 mg/L,时间为4 h);在竞争吸附实验中,对Cu(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)离子的去除率分别为99.5%、43.5%、60.5%(Cu(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)离子初始质量浓度均为200 mg/L,吸附剂用量为3 g/L)。  相似文献   

15.
采用溶剂热法制备了富羧基碳,随后通过化学共沉淀法合成了磁性富羧基碳复合材料。利用透射电子显微镜(TEM)、红外光谱分析(FTIR)、X射线衍射(XRD)、振动样品磁强计(VSM)、热重差热分析(TGA)、zeta电位分析及比表面积(BET)等手段对磁性富羧基碳的形貌、组成、结构、磁性以及表面电荷特性等进行了表征,并考察了富羧基碳和磁性富羧基碳对Pb(Ⅱ)、Ni(Ⅱ)、Hg(Ⅱ)和U(Ⅵ)的吸附性能。结果表明:富羧基碳经磁性改性后表面负载了铁氧化物纳米颗粒,比表面积由29.2m2/g提高到45.4m2/g,热稳定性提高,由磁滞回线可知,磁性富羧基碳的饱和磁化强度为30.68A.m2/kg。Pb(Ⅱ)、Ni(Ⅱ)、Hg(Ⅱ)和U(Ⅵ)在磁性富羧基碳上的平衡吸附容量分别为477.50、23.50、260.20、54.86mg/g,低于富羧基碳,吸附等温线符合Langmuir等温模型。从磁性富羧基碳对Pb(Ⅱ)、Ni(Ⅱ)、Hg(Ⅱ)和U(Ⅵ)均具有较高的吸附容量和不同吸附剂对U(Ⅵ)吸附容量的比较可以看出,该吸附剂是重金属污水和放射性废液处理领域中极具发展前景的吸附材料。  相似文献   

16.
本工作旨在合成一种高吸附性能、高选择性的吸附材料,实现重金属离子的去除和海水中铀资源的提取。将天然葵花粉(SFP)通过溶胶凝胶法与TiO2颗粒进行复合,得到TiO2/SFP复合材料。将合成材料进行扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、能谱分析(EDS)、X射线光电子能谱(XPS)等表征和吸附测试;在pH值为6.0时,材料最大吸附容量可达到215.7 mg/g。复合材料对于溶液中铀的吸附符合准二级动力学模型,是一个吸热、可自发的过程,其吸附等温线符合Langmuir模型,在模拟海水中材料对铀的去除率超过90%。  相似文献   

17.
采用多种方法对微陶材料进行了表征,分别采用静态法和动态法研究了溶液pH、吸附时间、铀初始浓度、吸附剂用量、解吸流速、吸附剂粒度等因素对微陶材料吸附铀的影响;探究了微陶材料对模拟放射性废水的处理能力。实验结果表明,扫描电镜显示微陶材料底部为层状结构,能谱显示其表面主要成分为铝元素,还有少量(质量分数6.00%)的铁元素;XRD结果显示微陶材料表面无明显Fe的衍射峰;红外光谱显示微陶材料对铀进行了吸附;当pH=5、吸附时间为1h、铀初始质量浓度为100μg/L、微陶材料用量为50mg时,微陶材料对铀的吸附率达到95%以上;动态法中流速和粒度对吸附影响较小;微陶材料对铀的吸附等温线符合Freundlich吸附等温模型;采用准二级反应动力学模型描述微陶材料对铀的吸附,吸附过程主要为化学吸附;微陶材料对模拟放射性废水中铀的吸附率均在90%以上,对锶、铯也有一定的吸附能力。  相似文献   

18.
为了去除放射性溶液中的90Sr,采用高锰酸钾和氯化锰的水溶液在pH=10~12、60℃的水浴中反应制备了一种MnO2吸附材料,并用X射线衍射法对其进行了初步分析和表征,该样品为α-MnO2和γ-MnO2的混合晶相。采用静态实验对该吸附剂进行研究,并将其与9种常见的天然锶吸附材料进行比较。结果表明:该吸附剂对90Sr的吸附效果明显好于常用天然吸附材料;其对90Sr的吸附速率非常快,约20min即可吸附平衡,且具有较高的理论饱和吸附容量(Q≈0.52mmol/g)和吸附分配系数(Kd),其典型Kd≈104 mL/g;随着硝酸浓度增加90Sr的Kd值迅速降低,当c(HNO3)=0.01mol/L时,Kd≈6×103 mL/g,而当c(HNO3)=0.1mol/L时,Kd值仅为6mL/g,降低了3个数量级;Na+、K+的含量对Kd值的影响较小,随其浓度增加Kd值缓慢降低,但Co2+、Ca2+对锶的Kd值具有较大的影响,随离子浓度增加Kd值快速减小。该吸附剂对模拟和真实放射性废液的90Sr动态去除实验结果表明,其对锶具有很好的吸附性能,可用于去除放射性废水中的90Sr。  相似文献   

19.
聚锑酸合成及吸附锶性能研究   总被引:1,自引:0,他引:1  
采用SbCl3氧化法合成的聚锑酸具有较好的机械性能,适合于色谱柱操作.聚锑酸在低酸度溶液中对锶吸附选择性好,在0.1 mol/L硝酸溶液中对锶的吸附容最达到42 mg/g.但是,聚锑酸对UO2 的吸附容量达到27.7 mg/g.研究结果表明,聚锑酸只能用于不含铀废液中90Sr的去除.  相似文献   

20.
放射性含铀废水会带来环境污染风险,合理有效处理含铀废水十分必要。本研究通过吸附实验探究偕胺肟聚丙烯腈(AO-PAN)对U(Ⅵ)的吸附特性,系统研究吸附温度、初始浓度、吸附时间对AO-PAN吸附U(Ⅵ)的影响。结果表明,随着吸附温度升高,AO-PAN对U(Ⅵ)的吸附量逐渐增加,在343K温度时吸附量达201.6mg/g。不同温度条件下随着吸附时间增加,AO-PAN对U(Ⅵ)的吸附量逐渐升高,吸附初始时吸附速率较快,随着吸附逐渐进行吸附曲线逐渐趋于平缓,最终达到吸附平衡。AO-PAN对铀的吸附量随溶液中初始浓度的增加而升高,温度为303K,溶液中初始铀浓度为500mg/L时,AO-PAN对U(Ⅵ)的吸附量达305.8 mg/g。此外,AO-PAN对铀酰离子的吸附符合朗格缪尔(Langmuir)模型,吸附热力学分析表明AO-PAN对铀酰离子的吸附是吸热和自发过程,吸附动力学分析表明AO-PAN对铀酰离子的吸附行为遵循准二级动力学模型,吸附速率控制机理分析表明AO-PAN对U(Ⅵ)的吸附初始受颗粒内扩散过程控制,随着吸附不断进行吸附过程逐渐由颗粒内扩散控制变为液膜扩散过程控制。吸附实验结果表明,AO-PAN是一种优良的吸附剂,可以用于吸附废水中U(Ⅵ),吸附过程的模型方程可以用于AO-PAN对U(Ⅵ)吸附过程的分析和计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号