首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为准确检测混凝土路面裂缝的形态与分裂程度,避免其结构进一步受损,提出了一种改进的DeepLabV3网络语义分割模型。利用Canny算法优异的检测能力对裂缝边缘进行提取,改进分割网络的上采样层进行残差多层采样;优化空洞卷积的扩张率降低感受野,平衡网络对不同尺度裂缝的敏感度;融合并行注意力模块抑制分割模型易产生的伪影效应,获取更具互补性的裂缝特征。在公开数据集上进行训练与预测,在全卷积网络 (FCN)结合条件随机场(CRF)方法、Deep LabV3方法、Deep LabV3+方法与Lraspp方法中开展了对比实验。实验结果表明,本方法的MPA为98.73%,MIOU为87.53%,有效抑制噪声干扰,分割结果精确且连续。  相似文献   

2.
混凝土结构裂缝对建筑安全构成了极大的潜在威胁,裂缝检测对建筑结构的维护具有重要意义,当前基于深度学习的裂缝检测针对提取裂缝细节的能力仍有待提高。因此,该文对Deepcrack网络进行优化,提出了基于金字塔分割注意力和全局上下文的混凝土裂缝检测算法PG-Deepcrack。首先,在编码器中提出双卷积-注意力并行模块,增加金字塔分割注意力分支为卷积层提供更丰富的多尺度裂缝信息;其次,为了捕获长距离依赖关系,并行模块操作后引入全局上下文模块,进一步提升网络对裂缝细节的表达能力;最后,在特征融合阶段利用全维动态卷积和GELU激活函数,对编解码器特征层联级融合,使网络更全面地保留不同尺寸的裂缝信息并提高模型的泛化性能。为验证网络模型的有效性,在Deepcrack数据集上与7个网络模型进行对比试验,所提出的网络表现了最佳性能,IoU达到了72.78%。  相似文献   

3.
苏赋  但涛  方东 《计算机工程》2021,47(7):30-36,43
新型冠状病毒肺炎给人类健康及社会经济造成了巨大的负面影响,而X光胸片中的肺实质提取成为新型冠状病毒肺炎诊断过程中的关键环节。在U-Net的基础上,提出一种结合编解码模式的肺实质分割算法。应用特征融合思想,构建A形特征融合模块,充分学习深层特征的语义信息。引入注意力机制,在深层卷积神经网络中加入密集空洞卷积模块和残差多核池化模块,扩大卷积感受野并提取上下文特征信息。通过改进可变形卷积和分割损失函数,提升网络模型的泛化能力和鲁棒性。实验结果表明,该算法的分割准确度、Dice系数、敏感度、Jaccard指数分别为98.16%、98.32%、98.13%、98.54%,能够实现X光胸片中肺实质部位的有效分割。  相似文献   

4.
针对遥感图像中一般水体、黑臭水体以及富营养化水体形状不规则以及相似难以准确分割的问题,选取研究区创建富含3类水体的数据集,利用深度学习卷积网络模型对3类水体数据集进行训练与测试。根据测试效果分析提出基于改进U-Net网络的遥感水质分割算法,改进卷积深度及在编码阶段输入层引入ASPP模块获取更加复杂的光谱信息,提高分割精度。实验表明,所提出的改进型U-Net分割算法能够显著提升水质分类的精确度和分割效果,从而实现一般、黑臭及富营养化水体的准确分类。  相似文献   

5.
传统遥感影像分割算法存在分割精度低、小目标物体容易漏分、目标边缘分割模糊等问题。针对以上问题,提出了一种基于注意力机制的改进UNet卷积神经网络算法。通过UNet网络学习遥感影像目标的总体特征,引入注意力机制模块重点关注有用的信息并抑制无关的信息,使网络更好的区分不同类别的目标。实验结果表明,上述算法在ISPRS数据集上分割的总体精度得到了提高。与其它分割算法相比较,上述算法有效提高了遥感影像的分割精度,并且在目标边缘分割的更平滑和完整。  相似文献   

6.
针对当前农作物病害分割与识别模型病斑分割精度低、数据集不充分、训练速度过慢等问题,构建了一种基于改进的U-Net网络多尺度番茄叶部病害分割算法。在U-Net网络结构基础上进行改进,减小图像输入尺寸,在编码器中使用非对称Inception多通道卷积替换传统卷积,实现多尺度提取病害特征,提升模型准确度;在解码器中加入注意力模块,关注番茄病害边缘,减小上采样噪声;引入GN加速模型收敛,并将改进U-Net网络用在PlantVillage数据集上进行预训练,提高模型的分割准确度和速度。改进后的方法准确率、召回率和MIoU分别为92.9%、91.1%、93.6%,实验结果表明,该方法能够有效地提高模型对番茄的病害分割性能。  相似文献   

7.
图像分割经历了从基于传统的阈值分割等方法逐步发展到基于卷积神经网络的方法. 传统的卷积神经网络在分割领域中表现突出, 但训练速度慢、分割精度不够高等局限性也逐渐显现. 为了克服这些局限性, 本文在TransUNet网络的基础上进行改进, 提出了基于BM-TransUNet网络的图像分割识别方法, 在TransUNet网络的在第1层之后加上深度可分离卷积模块, 并在编码器下采样的卷积层后引入注意力机制模块, 让算法更好地探索分割对象特征, 同时在编码器与解码器之间引入多尺度特征融合模块FPN. 本文基于自制的咽后壁数据集, 用于图像分割训练, 并将训练后的BM-TransUNet网络与多种传统分割网络的效果进行对比. 实验结果表明, 相比于其他传统的深度学习模型, BM-TransUNet网络的识别方法具有较高的分类准确性和泛化能力, 精确度PrecisionDice系数分别达到了93.61%和90.76%, 显示出较好的计算效率, 能有效地应用于分割任务.  相似文献   

8.
针对目前工业裂缝分割算法存在细小裂缝易丢失、孤立噪点难消除的问题,提出一种基于可逆金字塔和平衡注意力的工业裂缝分割网络(reversible pyramid and balanced attention network,RPBAN)。提出可逆金字塔模块,在编码器与解码器之间引入特征金字塔和改进后的倒-特征金字塔,加深全局特征与细节特征的融合,从而提升细小裂缝检测性能;在解码阶段引入平衡注意力模块,将平衡特征作为引导信息,有效消除孤立噪点;在学习阶段选取Focal Loss作为损失函数,控制正负样本在训练中所占的权重,使得模型更专注于裂缝样本。通过在自建的输配电线路瓷瓶裂缝数据集InsulatorCrack和三个具有挑战性的公开裂缝数据集CFD、CrackTree200和AEL上进行验证和测试,实验表明与其他基准方法相比,RPBAN提升了细小裂缝检测效果,有效消除了孤立噪点,能够实现更高精度的语义分割。在四个数据集上IoU分别达到61.42%、58.36%、64.45%、53.44%,说明了RPBAN的有效性和通用性。  相似文献   

9.
目的 针对ASPP(atrous spatial pyramid pooling)在空洞率变大时空洞(atrous)卷积效果会变差的情况,以及图像分类经典模型ResNet (residual neural network)并不能有效地适用于细粒度图像分割任务的问题,提出一种基于改进ASPP和极化自注意力的自底向上全景分割方法。方法 重新设计ASPP模块,将小空洞率卷积的输出与原始输入进行拼接(concat),将得到的结果作为新的输入传递给大空洞率卷积,然后将不同空洞率卷积的输出结果拼接,并将得到的结果与ASPP中的其他模块进行最后拼接,从而改善ASPP中因空洞率变大导致的空洞卷积效果变差的问题,达到既获得足够感受野的同时又能编码多尺度信息的目的;在主干网络的输出后引入改进的极化自注意力模块,实现对图像像素级的自我注意强化,使其得到的特征能直接适用于细粒度像素分割任务。结果 本文在Cityscapes数据集的验证集上进行测试,与复现的基线网络Panoptic-DeepLab(58.26%)相比,改进ASPP模块后分割精度PQ(panoptic quality)(58.61%)提高了0.35%,运行时间从103 ms增加到124 ms,运行速度没有明显变化;通过进一步引入极化自注意力,PQ指标(58.86%)提高了0.25%,运行时间增加到187 ms;通过对该注意力模块进一步改进,PQ指标(59.36%)在58.86%基础上又提高了0.50%,运行时间增加到192 ms,速度略有下降,但实时性仍好于大多数方法。结论 本文采用改进ASPP和极化自注意力模块,能够更有效地提取适合细粒度像素分割的特征,且在保证足够感受野的同时能编码多尺度信息,从而提升全景分割性能。  相似文献   

10.
针对电动自行车和煤气罐搭乘电梯引起的火灾隐患,提出一种改进注意力机制的电梯场景下危险品检测方法。以YOLOX-s为基线模型,首先在加强特征提取网络中引入深度可分离卷积替换标准卷积,提升模型的推理速度。然后提出一种基于混合域的高效卷积块注意力模块(ECBAM)并嵌入主干特征提取网络中。在ECBAM模块的通道注意力部分,使用一维卷积替换两个全连接层,既降低了卷积块注意力模块(CBAM)的复杂度又提高了检测精度。最后提出一种多帧协同算法,通过结合多张图片的危险品检测结果以减少危险品入侵电梯的误报警。实验结果表明:改进后模型比YOLOX-s的平均精度均值(mAP)提升了1.05个百分点,浮点计算量降低了34.1%,模型体积减小了42.8%。可见改进后模型降低了实际应用中的误报警,且满足电梯场景下危险品检测的精度和速度要求。  相似文献   

11.
两段式缺陷检测模型中分割和分类网络的优化目标不一致,导致二者耦合性较差,且分割模块误差的积累可能进一步弱化分类模块的性能.针对上述问题,提出一种基于注意力机制的缺陷检测联合优化算法.首先基于混合注意力特征融合模块的分割网络融合浅层特征和深层特征,提取更全面的缺陷位置信息;然后基于多感受野空间注意力模块的分类网络挖掘更具判别性的缺陷类别特征;最后通过联合优化目标实现分割和分类网络的学习优化,提升整个算法的耦合性以及性能.基于PyTorch框架,在公开工业缺陷检测数据集DAGM 2007, MAGNETIC-TILE和KolektorSDD2数据集上进行实验,并引入分段式算法及类U-Net算法进行横向对比的结果表明,所提算法的准确率相比分段式算法最高提升28.02%,相比类U-Net算法最高提升8.3%,且精确率、召回率、F1值均优于同类算法,具有更好的检测性能.  相似文献   

12.
目的 随着3维采集技术的飞速发展,点云在计算机视觉、自动驾驶和机器人等领域有着广泛的应用前景。深度学习作为人工智能领域的主流技术,在解决各种3维视觉问题上已表现出巨大潜力。现有基于深度学习的3维点云分类分割方法通常在聚合局部邻域特征的过程中选择邻域特征中的最大值特征,忽略了其他邻域特征中的有用信息。方法 本文提出一种结合动态图卷积和空间注意力的点云分类分割方法(dynamic graph convolution spatial attention neural networks,DGCSA)。通过将动态图卷积模块与空间注意力模块相结合,实现更精确的点云分类分割效果。使用动态图卷积对点云数据进行K近邻构图并提取其边特征。在此基础上,针对局部邻域聚合过程中容易产生信息丢失的问题,设计了一种基于点的空间注意力(spatial attention,SA)模块,通过使用注意力机制自动学习出比最大值特征更具有代表性的局部特征,从而提高模型的分类分割精度。结果 本文分别在ModelNet40、ShapeNetPart和S3DIS(Stanford Large-scale 3D Indoor Spaces Dataset)数据集上进行分类、实例分割和语义场景分割实验,验证模型的分类分割性能。实验结果表明,该方法在分类任务上整体分类精度达到93.4%;实例分割的平均交并比达到85.3%;在室内场景分割的6折交叉检验平均交并比达到59.1%,相比基准网络动态图卷积网络分别提高0.8%、0.2%和3.0%,有效改善了模型性能。结论 使用动态图卷积模块提取点云特征,在聚合局部邻域特征中引入空间注意力机制,相较于使用最大值特征池化,可以更好地聚合邻域特征,有效提高了模型在点云上的分类、实例分割与室内场景语义分割的精度。  相似文献   

13.
针对目前车载计算单元的计算资源和计算能力有限,不能运行网络层次较深的目标检测算法,设计了一种轻量化的网络模型用于对拥挤行人场景的检测,将Darknet53骨干网络替换为GhostNet,通过引入线性计算获得与普通卷积相似的特征图来减少计算资源消耗;引入空间金字塔池化模块实现多尺度融合,加强特征提取;提出使用更加高效的搜索机制改进卷积块注意力机制模块,联合分类网络AlexNet对自适应搜索广度k值进行选取,进一步提高网络性能;采用Grad-CAM算法将网络模型实现热力图可视化来对注意力机制进行分析;引入CIOU损失函数实现真实框和预测值在中心点上的拟合,以此来加速模型收敛和实现更加精确的定位。研究结果表明:改进后的网络在WiderPerson行人检测数据集上行人类别查准率达到75.35%,相比于改进前的模型在行人查准率和平均查准率上分别提高了5.76个百分点和3.28个百分点。在Visdrone数据集上,改进后的网络平均查准率达到35.6%,在基本接近于YOLOv3的基础上,每秒检测图片的数量可以达到60张,相较于传统的单阶段检测算法,检测速率最高提升了52.1%,能满足移动设备以及车载...  相似文献   

14.
混凝土路面上的裂缝会影响结构的安全性、适用性和耐久性,裂缝检测是一个充满挑战的研究热点。文中提出了由改进的全卷积网络和深监督网络组成的裂缝检测模型,以改进的VGG-16作为主干网络,首先将低层卷积特征聚合,通过空间注意力机制再次融合到主干网络;其次,将中高层卷积特征通过轻量级空洞卷积融合模块进行多尺度融合得到具有清晰边缘且分辨率较高的特征图像,所有的侧边特征图像相加产生最终的预测图像;最后,深监督网络为每个阶段的检测结果提供直接监督。该网络选择焦点损失函数作为评价函数,经过训练的网络模型能够在光照不均、背景复杂等各种条件下从输入的原始图像中高效地识别出裂缝位置。为验证所提方法的有效性和鲁棒性,在DeepCrack, CFD,Crack500这3个数据集上与6种方法进行了比较,所提算法表现出卓越的性能,F-score值达到了87.12%。  相似文献   

15.
针对在动态场景下视觉同步定位与建图(SLAM)鲁棒性差、定位与建图精度易受动态物体干扰的问题,设计一种基于改进DeepLabv3plus与多视图几何的语义视觉SLAM算法。以语义分割网络DeepLabv3plus为基础,采用轻量级卷积网络MobileNetV2进行特征提取,并使用深度可分离卷积代替空洞空间金字塔池化模块中的标准卷积,同时引入注意力机制,提出改进的语义分割网络DeepLabv3plus。将改进后的语义分割网络DeepLabv3plus与多视图几何结合,提出动态点检测方法,以提高视觉SLAM在动态场景下的鲁棒性。在此基础上,构建包含语义信息和几何信息的三维语义静态地图。在TUM数据集上的实验结果表明,与ORB-SLAM2相比,该算法在高动态序列下的绝对轨迹误差的均方根误差值和标准差(SD)值最高分别提升98%和97%。  相似文献   

16.
针对传统图像处理算法舌象分割效果差的问题,采用deeplabv3+网络模型来对舌象进行分割研究,同时采用注意力机制和改进条带池化模块对网络模型进行改进。单一改进模块融入对网络模型提升不高,当将注意力机制模块CBAM、条带池化模块SPM和混合池化模块MPM都有效融入网络模型时,相比于未改进的deeplabv3+网络模型MPA提升了1.49%,MIOU提升了2.02%,证明了改进算法在舌象分割网络模型中的有效性。  相似文献   

17.
为解决传统模型与算法对遥感卫星图像小目标的分割精度低、泛化能力差等问题,提出一种基于改进U-Net的图像分割算法。将骨干网络改为ResNet18并加入优化后的空洞卷积池化金字塔与卷积注意力机制模块,充分提取小目标边缘特征。该算法在中国南部某地区的公开卫星图像数据集上的平均交并比与分割总精度分别达到了75.8%与95.6%,均超过U-Net、DeepLabV3+、SegNet、W-Net等主流语义分割网络。实验结果表明,该算法能有效改善网络的预测精度与小目标的分割结果。  相似文献   

18.
腹部动脉血管分割对于胃癌淋巴结的转移和肝动脉变异类型的判断至关重要。针对腹部动脉血管分割精度低、易断裂等问题,提出一种改进卷积网络架构的腹部动脉分割方法。卷积网络的编码部分使用带有卷积注意的预训练模块(resnet34),避免了梯度消失且可更好地获取图像的特征信息。为了扩大感受野和聚集多尺度特征信息,提出了一种新的多尺度特征融合模块。此外,动脉血管的边缘结构信息的学习至关重要,引入注意力导向滤波作为信息扩展路径,使输出特征更加结构化,提升血管分割的精度。所提方法在腹部动脉血管分割的实验结果表明,与基础网络U-Net相比,所提方法在灵敏度和交并比上分别提升了2.84%和1.19%。与CE-Net网络相比,在灵敏度和交并比上分别提升了1.34%和161%。  相似文献   

19.
随着卷积神经网络的发展,现有改进的息肉分割U-Net网络能有效提高息肉分割准确率,但引入了大量参数,导致模型复杂度增大且计算效率降低。提出具有低复杂度、高性能的网络GLIA-Net,用于分割内窥镜图像中的息肉区域。以U-Net为基础架构,在双层卷积后加入全局与局部交互式注意力融合模块。全局注意力基于2个可学习的外部储存器,通过2个级联的线性层和归一化层来实现。局部注意力基于局部跨通道交互策略,将一维卷积代替全连接层,在保证网络性能的同时降低计算复杂度,加快网络的计算速度。结合高效通道注意力和外部注意力的优点,在不引入过多参数量和计算量的前提下融合局部注意力和全局注意力,同时在通道与空间2个维度上引入注意力机制,提取丰富的多尺度语义信息。在Kvasir数据集上的实验结果表明,GLIA-Net的平均交并比、Dice、体积重叠误差分别为69.4%、80.7%和5.0%,与ExfuseNet、SegNet、ResUNet等网络相比,在保证网络计算效率的同时具有较优的分割精度。  相似文献   

20.
为提高行人检测的检测性能, 本文结合SqueezeNet、注意力机制、空洞卷积和Inception等结构, 提出一种基于改进YOLOv4的行人检测算法. 改进YOLO在特征增强部分引入残差连接和结合空洞卷积的注意力模块D-CBAM, 可以从提取到的特征中选择对目标检测重要的信息. 此外, 结合SqueezeNet的“squeeze- expand”结构和Inception网络的多尺度卷积思想提出Inception-fire模块用于替代网络中的连续卷积层, 通过增加网络的宽度达到提升算法性能的效果, 同时减少网络的参数. 最后, 根据行人检测任务的特点并结合Focal loss对损失函数进行改进, 分别对正负样本和难易样本添加权重因子, 强调对正样本和难分类样本的训练, 从而提高网络的检测能力. 改进的YOLO算法在INRIA行人数据集上的检测精度能够达到94.95%, 相对原YOLOv4提高4.25%, 同时参数量减少了36.35%, 检测速度也获得13.54%的提升, 在行人检测中能够表现出更优秀的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号