首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨锋苓  曹明见  张翠勋  刘欣 《化工学报》2021,72(4):1975-1986
采用数值模拟的方法分析了课题组前期开发的实验室规模的柔性叶片Rushton搅拌桨的振动特性,并采用丹麦的Brüel & Kj?r及中国的东华振动测试仪进行了实验研究。结果表明,桨轴系统的第1~6阶振型为弯曲型,第7~12阶振型为扭转型。模拟得到的固有频率与实验结果吻合较好,均表明存在集聚现象;与干模态固有频率相比,湿模态固有频率有所降低。承受高频交变激励载荷时,桨轴系统存在明显的应力和应变谐响应。桨轴系统的固有频率随转速的增大而减小,随介质黏度的增大而增大。研究结果为柔性叶片Rushton搅拌桨的放大设计及工业应用奠定了基础。  相似文献   

2.
为了减小搅拌阻力与功耗,本研究提出了疏水叶片搅拌桨的设想。首先采用数值模拟的方法,对非疏水Rushton桨搅拌容器内的流场进行了模拟,通过与文献中实验结果的对比,验证了数值模型和模拟方法的可靠性。随后研究了湍流状态下疏水Rushton搅拌桨的流体动力学性能,分析了不同疏水状态下的流场结构、剪应力和压力分布以及减阻效果和搅拌功耗,并与非疏水桨进行了对比。结果表明,疏水处理后Rushton桨搅拌容器内的流场没有明显变化,但流体的轴向泵送能力有所增强,高速度区域略有扩大,超疏水时效果更明显。疏水处理可降低Rushton桨的剪应力和桨叶前后表面间的压差,具有减阻效果,超疏水时减阻幅度高达39.56%。另外,疏水Rushton桨的搅拌功耗有所降低,与非疏水桨相比,超疏水桨的功率准数降低了8.53%,具有显著的节能效应。  相似文献   

3.
李岩  刘雪东  钱建峰 《化工进展》2013,32(9):2056-2060
采用CFD方法模拟了具有相同桨径、不同桨叶折角和叶宽结构的6种新型搪玻璃搅拌桨的搅拌特性。考察了挡板、桨叶离底高度对釜内流场的影响,基于此分析了桨叶折角、叶宽对速度分布的影响。对模拟得到的搅拌功率和混合时间进行了实验验证,并与传统搪玻璃桨式搅拌器进行比较。结果表明:①新型桨叶在加挡板且桨叶离底高度为450 mm时,搅拌效果最佳;②随桨叶折角、叶宽的增大,桨叶区轴向、径向和切向速度均呈增大趋势,当桨叶折角为45°、叶宽为95 mm时,釜内混合效果最好;③随转速增大,搅拌功率呈增大趋势,混合时间呈减小趋势,新型桨明显比传统桨混合性能好,桨叶折角为30°、叶宽95 mm时功率消耗最低,桨叶折角为35°、叶宽95 mm时混合时间最短。  相似文献   

4.
柔性Rushton搅拌桨的功耗与流场特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
基于传统的Rushton桨,开发了一种柔性叶片Rushton搅拌桨。采用数值模拟方法研究了柔性桨的功耗及层流和湍流流场特性,并分别采用扭矩测量法和粒子图像测速法进行了实验验证。结果表明,对于实验规模的搅拌容器,当介质黏度与甘油接近时,可用橡胶作为柔性桨叶制作材料。Reynolds数≤100时,柔性桨的功耗大于刚性桨;Reynolds数大于该值后,柔性桨的功耗小于刚性桨。柔性桨叶对被搅拌流体具有自适应特性,流固耦合作用下产生的变形增加了流体的径向流动能力。搅拌低黏度流体时,柔性桨能提升近桨区流体的速度,增加桨叶远端流体的循环流动能力;搅拌高黏度流体时,近桨区和桨叶远端流体的速度均大于刚性桨。就尾涡而言,柔性桨产生的涡量较小,耗能少。  相似文献   

5.
陈余秋 《化工机械》2020,47(6):805-807+846
采用有限元法对载荷工况下的搅拌容器系统进行了预应力模拟,通过模态分析得出该系统在预应力状态下的1~10阶固有频率,同时把转换和计算得到的系统在工作状态下电机的转动频率、轴的转动频率、流体通过挡板的频率、流体通过叶片的频率和流体的冲击频率作为激振频率,并与固有频率进行对比得出:激振频率分别落在1~10阶固有频率±20%区间之外,即在工作状态下搅拌容器系统不会发生共振。  相似文献   

6.
连续式搅拌反应器采用连续化工艺,可以保证生产过程的连续性,相较于传统反应器而言,连续式反应器内流场更复杂,进料口射流对于流场的影响较为明显。对传统的双层搅拌桨结构的微波反应釜进行连续化改造,基于计算流体力学CFD(Computational Fluid Dynamics)方法对不同射流方案下反应器内醇油混合液的流动及混合特性进行了数值模拟,得到反应器内混合液的流动特性和混合时间特征。结果表明:射流通过直接影响射流区的流场和改变反应器内的循环涡流位置间接影响全局流动;射流方向对于反应器内流型影响更大,逆时针射流时反应器内的速度梯度大,流体之间的剪切作用更强,混合性能最佳,相较于传统的间歇式搅拌反应器,混合时间缩短了33%。  相似文献   

7.
柔性Rushton搅拌桨混合性能的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提高混合效率是流体搅拌混合领域的重点研究内容之一。几十年来,人们在开发新型搅拌桨及研发流体混合新技术方面做了大量工作。基于刚性Rushton桨,开发了一种柔性叶片Rushton搅拌桨,并以罗丹明6G为荧光剂,采用平面激光诱导荧光法对介质为水时该桨在湍流状态下的混合性能进行了实验测试研究。结果发现,标定实验结果表明,荧光剂强度与浓度呈线性关系,可以此为基准衡量同等实验条件下的宏观混合时间。荧光剂的扩散情况表明,与刚性桨相比,柔性桨具有更好的混合性能,尤其在混合的初始阶段,混合均匀程度及混合速度均有一定的优势。与刚性桨混合时间的对比表明,柔性桨的宏观混合时间较短,有助于提高流体混合效率。研究结果为该桨的工业应用奠定了基础。  相似文献   

8.
在自行研发并制造的立体全方位旋转射流搅拌器的基础上,介绍了其结构组成和工作原理。为了考察该搅拌器的防沉降搅拌效果,采用SIMPLE算法和标准k-ε双方程湍流模型,运用Fluent软件对其三维稳态流场进行了数值模拟。通过对不同出射速度下全方位旋转射流搅拌器的3种不同偏转角度下的喷嘴与水平喷嘴喷射时在罐底产生的冲击压力、流速和湍动能进行分析并对比,结果表明:偏角喷嘴能够对罐底沉积物起到冲刷搅拌作用,但随着偏转角度的增大,冲刷搅拌效果相应减弱;相同出射速度下3种偏角喷嘴的相应参数均比水平喷嘴的数值更大,影响范围更广,防沉降效果更好;结合全方位旋转射流搅拌器立体旋转的结构特点进一步说明了全方位旋转射流搅拌器具有三维立体的搅拌作用。  相似文献   

9.
《化工机械》2015,(4):548-553
利用Ansys CFX软件对自吸式龙卷流型搅拌槽内的气、液、固三相混合特性进行了研究,从速度场、固相分布、湍动能、湍动能耗散及切应变速率等方面对其进行数值模拟,并与标准搅拌槽进行对比发现:自吸式龙卷流型搅拌槽具有良好的速度分布和固液悬浮性能,其湍动能和湍动能耗散分布合理,有利于物料之间的充分接触与混合,且其主要混合区域的剪切力小、功耗低,对介质的损伤小,节能效果明显。  相似文献   

10.
轴流桨搅拌槽三维流场数值模拟   总被引:30,自引:2,他引:30       下载免费PDF全文
利用k -ε湍流模型预测了搅拌槽在不同操作条件下宏观速度场 ,模型成功预测了搅拌槽内速度分布 ,计算结果与实验结果吻合较好 .模型预测结果表明 ,搅拌槽内宏观流动场受搅拌桨槽径比影响较大 .对单层搅拌桨 -槽体系 ,挡板前后宏观流动场差别很大 ,在挡板以前区域 ,轴向流动较强 ,在整个r -z断面上形成一个整体循环 ;而在挡板后面区域 ,流体在桨叶安装位置高度附近转向轴心流动 ,槽体上半部区域形成二次循环区域 ,且二次循环区域内流体以向下流动为主 .  相似文献   

11.
杨锋苓  周慎杰 《化工进展》2011,30(6):1158-1169
搅拌槽内的流场是决定混合、传热及传质等操作的基础,对流场的研究具有十分重要的意义,计算流体动力学是研究流场的重要方法。本文回顾了搅拌数值模型的发展历程,阐述了三十年来各种搅拌流场数值模拟方法的特点及其应用情况,对比分析了各种湍流模型的优缺点,并展望了未来搅拌槽内单相湍流模型的发展方向。  相似文献   

12.
基于计算流体力学,以射流清洗喷嘴的结构为研究对象,分析喷嘴结构对喷嘴射流特性的影响.本次研究基于Fluent软件平台,对不同喷嘴结构进行数字模拟仿真分析,再利用正交试验设计方法分析计算结果得出最佳结构的喷嘴结构.研究结果表明,喷嘴出口切面形状对射流速度影响最大,收缩角其次,喷嘴出口段长度影响最小.  相似文献   

13.
针对搅拌槽内流体流动、柔性结构振动和流动流体与柔性结构相互作用(流固耦合)的特征,分别采用计算流体动力学(不考虑结构振动)、计算结构动力学(不考虑流体作用)和两种计算动力学相互瞬态耦合模拟(同时考虑结构振动和流体作用)研究Rushton桨搅拌轴的弯矩幅值平均和波动特性。研究结果表明:搅拌槽内流体充当了振动的阻尼作用,抑制了搅拌桨轴侧向振动的幅度,但主体流动的低频宏观不稳定性显著地增加了搅拌桨轴旋转的不稳定性,同时搅拌桨轴侧向振动增加了搅拌桨叶片上的流体载荷不稳定性,但对不均衡性影响很小;弯矩流体成分(来源于流体压力和粘性力)与结构成分(来源于结构重力和惯性力)之间夹角是随机的,但平均夹角接近于90°;耦合模拟结果与实验数据吻合较好,且明显优于计算流体动力学和计算结构动力学分离模拟计算结果。研究结果有助于深入理解搅拌槽内流固耦合对搅拌轴弯矩的影响,对搅拌设备的机械设计具有指导意义。  相似文献   

14.
涡轮桨直径对锥盘底搅拌槽固液混合特性影响   总被引:1,自引:0,他引:1  
《化学工程》2017,(6):62-68
利用CFD技术对锥盘底搅拌槽内的固液两相流混合浓度场进行数值模拟研究,考察了45°圆盘涡轮式搅拌桨直径d对固液混合时间数,单位体积混合能,浓度标准差,湍动能和湍动耗散率,和固相离底悬浮临界转速的影响。研究表明:随着搅拌桨直径的增大,搅拌槽内的流体由轴向流转变为径向流的流型转变高度逐渐减小。桨径比d/D大于0.3时,混合时间数显著减小;d/D小于0.4时,单位体积混合能较小;d/D达到1/3时,单位体积混合能最小。浓度标准差随搅拌桨直径的变化波动较小。d/D小于0.4时,湍动耗散率的增长率较低;d/D大于0.3时,固相离底悬浮临界转速显著减小。从提高混合效率和降低能耗的综合角度考虑,桨径比d/D应控制在0.3—0.4之间。  相似文献   

15.
偏心空气射流双层桨搅拌反应器流场结构的分形特征   总被引:1,自引:4,他引:1  
搅拌槽内流场分为混沌混合区和隔离区。为提高搅拌槽内流体的混合效率、降低搅拌过程的能耗,调控流场结构特征是重要的途径。结合图像处理软件,实验研究了偏心空气射流双层桨搅拌槽内空气-水体系的流场结构分形维数的变化规律。实验结果表明,流场结构分形维数受搅拌转速和空气流速的共同作用;偏心空气射流能改变流场结构分形维数,使流体混沌混合特性增强;机械搅拌转速增大,能改变射流场的拟序结构,提高气液混合效率。  相似文献   

16.
穿流-柔性组合桨强化搅拌槽中流体混沌混合特性   总被引:1,自引:3,他引:1       下载免费PDF全文
刘仁龙  李爽  刘作华  陶长元  王运东 《化工学报》2015,66(12):4736-4742
刚性搅拌桨在搅拌混合过程中得到广泛的应用,在搅拌容器内容易形成两种不同的混合区域:混沌混合区和混合隔离区。强化流体混合的有效途径是合理设计搅拌桨,从而调控流体混沌混合行为。实验运用Labview和Matlab软件采集和处理流体内部压力脉动信号,并获取流体混沌特性参数Kolmogorov熵,对穿流-柔性组合桨体系的Kolmogorov熵随转速的变化规律进行了研究。结果表明,相比传统刚性桨,穿流桨对Kolmogorov熵影响不大。穿流-柔性组合桨通过穿流孔与柔性部分的共同作用调控流场结构,使流体混沌混合的效果最好,在转速为180 r·min-1时流体的混沌混合达到最佳状态,穿流-柔性组合桨体系的Kolmogorov熵为0.285,而传统刚性桨体系的Kolmogorov熵只为0.125;穿流-柔性组合桨体系的混合时间明显低于传统刚性桨体系,当转速为120 r·min-1时穿流-柔性组合桨体系的混合时间比传统刚性桨体系缩短了17%。  相似文献   

17.
高黏度流体处于层流状态时,普遍存在的混合隔离区,降低了流体的混合效率。减小或消除隔离区,是实现流体高效混合的基本途径。采用实验研究与数值模拟相结合的方法,对刚性六直叶涡轮桨(刚性桨)和刚柔组合六直叶涡轮桨(组合桨)的流场结构进行研究,对比分析了两种桨叶在相同功耗(3 kW·m-3)时的轴向、径向和切向的速度矢量图、速度云图以及速度分布散点图。结果表明,刚性桨的能量集中在桨叶尖端部分,远离桨叶区域的流体速度很小甚至为0 m·s-1;而组合桨可将能量从桨叶尖端扩散至全槽,使槽内流体均具有一定的流速,提高了混合效率,且显色实验与数值模拟结果一致,组合桨体系的混合隔离区在短时间内就可消除,混合良好,而刚性桨体系的混合隔离区始终存在,混合效果不佳。  相似文献   

18.
在直径为240mm的搅拌釜内,考察了最大叶片式桨、泛能式桨和叶片组合式桨的功率消耗、传热及混合特性,并与螺带桨及三叶后掠式桨进行了比较,实验表明,在中低粘度范围内,3种新型桨的传热和混合性能优于螺带桨及三叶后掠式桨。  相似文献   

19.
适用于动物细胞培养的搅拌桨及其数值模拟   总被引:1,自引:0,他引:1  
颜旭  张志强  顾承真  洪厚胜 《现代化工》2014,34(10):162-166
提出了一种方法考察桨叶在动物细胞培养上的适用性,应用计算流体力学软件CFX综合比较在30 L搅拌槽中4种不同桨叶的流场、剪切率、Kolmogorov尺度和混合时间,并进行PIV实验验证。结果表明,在单层搅拌体系80 r/min转速下,象耳桨和螺旋桨性能能满足细胞培养要求,Rushton桨在细胞培养罐放大时可以考虑,45°四折叶桨能够适用于细胞培养,但效果不如象耳桨与螺旋桨,PIV实验验证了模拟结果可行性。  相似文献   

20.
轴流式搅拌桨搅拌槽内混合时间的数值模拟   总被引:3,自引:0,他引:3  
利用计算流体力学软件FLUENT 6.0程序计算了单层CBY搅拌槽内流体混合过程的速度场和浓度场,讨论了加料点位置和监测点位置对混合时间的影响。结果表明,拌槽内物料的混合过程主要由槽内的流体流动所控制;混合时间与加料点位置有关,在桨叶附近区域加料时混合时间比在液体表面加料时的混合时间短,应尽量在搅拌反应器的桨叶尖端处加料;不同的监测点位置对混合时间有很大的影响,在靠近槽底部进行监测所得到的混合时间最短。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号