首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
开展花岗岩单轴压缩声发射监测实验,利用横、纵波两种类型传感器接收花岗岩破裂过程声发射信号,从声发射事件率、能率、主频和主频幅值方面,研究花岗岩破裂过程声发射横、纵波时频特征的异同点,探索岩石破裂过程不同模式声发射波形信息的特征规律。研究结果表明:花岗岩破裂过程声发射纵波事件率在峰值载荷前出现明显声发射"平静期",而横波事件率"平静期"现象不明显;声发射横、纵波能率曲线形式一致,在临近峰值载荷时均出现陡升现象,但数值上纵波普遍高于横波。花岗岩破裂过程声发射纵波主频以低频(35~110 kHz)为主,数量占比达到96.4%,横波以高频(300~500kHz)为主,数量占比达到66.36%;对于纵波与横波,二者高幅值声发射信号均位于低频区间,意味着花岗岩破裂过程中高能量横、纵波声发射信号均表现出低频高幅值特征。研究结果扩展了对岩石破裂过程不同模式声发射特征的认识,进一步为建立基于声发射的岩石破裂预测方法提供科学依据。  相似文献   

2.
花岗岩破裂过程中声波与声发射变化特征试验研究   总被引:1,自引:0,他引:1  
采用声波、声发射一体化监测装置研究了单轴加载及循环荷载作用下花岗岩波速和声发射变化特征。研究结果表明:①加载初期,岩石内部微裂纹受力闭合,纵波、横波波速显著增加,而声发射事件数量极少;加载中期,岩石处于线弹性变形阶段,纵波、横波波速缓慢增加后保持稳定,声发射事件少量产生,约占声发射事件总量的9.44%;加载后期,岩石处于破裂损伤阶段,裂纹开始萌生,拓展,岩石纵波波速呈现略微下降趋势,而横波波速明显降低,声发射活动剧烈,约占声发射事件总量的50.63%。峰值应力之后,花岗岩横波波速开始急剧下降,而纵波波速缓慢降低,声发射活动依然活跃。②由于岩石的内部损伤需要积蓄一定能量才会形成,因此声发射活动呈现“相对平静、间隔突发”的规律,“相对平静期”最明显的时段位于峰值应力之前。③循环加卸载条件下,岩石的波速和声发射变化特征与应力状态表现出良好的一致性。统计分析声发射事件数量随应力的变化规律,论证了岩石的Felicity效应;比较分析加载过程中的Felicity比变化,证明了岩体的累积损伤。  相似文献   

3.
 通过岩石力学室内加载试验,对花岗岩在不同围压下的破坏全过程进行声发射试验,得到了岩石破裂全过程中的力学参数和声发射低频、高频信号特征,研究了低频、高频声发射信号的振铃计数、能量累计数与岩石应力、时间之间的关系,探求了声发射信号峰值频率在岩石主破裂前期的分布情况。研究表明:低频与高频通道接收的声发射信号基本特征--振铃计数、能量累计数在岩石破裂过程中的整体变化趋势基本相同,与岩石力学过程形成良好的对应;两通道的信号基本特征主要区别在于数值大小。在声发射频谱特征方面,岩石破裂的前兆信息在声发射信号峰值频率分布中呈现为峰频主频段增多的特征,表现为信号峰频分布由岩石加载初期的1~2个主频段(40~50 kHz和150~170 kHz频段)在岩石临界主破裂时增多到最多5个主频段(25~30 kHz、40~50 kHz、60~70 kHz、90~100 kHz及150~160 kHz频段)。  相似文献   

4.
岩石材料的受拉性能远不及受压性能好,其受拉的破坏机制决定着岩石工程的稳定性与安全性。为研究岩石材料受拉损伤破坏机制,通过振动理论和间接拉伸条件下声发射试验分析花岗岩损伤演化过程,并通过分形理论以及声发射信号的主频和能量分布特征来获得拉伸破坏机理。从声发射事件分布来看,当加载应力达到抗拉强度时岩样瞬间破坏,声发射事件数急剧增大,反映出明显的脆性性能。声发射事件的分形维数也随着加载应力增大而减小。间接拉伸破坏全过程声发射信号的主频集中在175~250 k Hz和50~100 k Hz两个频率范围,声发射信号的能量集中分布在0~312.5 k Hz频段,占信号总能量的80%以上。其拉伸应力波特征和分形机理能够反映岩石材料的基本力学性能,对更进一步研究岩石的性能、增强岩石工程的安全性有重要的实验和理论意义。  相似文献   

5.
 通过开展花岗岩单轴压缩声发射试验,提取花岗岩破裂过程声发射信号的能量、主频和主频幅值,分析花岗岩破裂过程中3种耦合关系:破裂尺度和能量、能量和主频幅值、能量和主频的关系。以能量为媒介,探讨破裂尺度和声发射信号特征(能量、幅值和主频)之间的对应关系,研究花岗岩破裂过程中不同破裂尺度对应声发射信号的演化规律,探索岩石破裂的声发射前兆规律。研究结果表明:花岗岩破裂过程中存在4种模式声发射信号:低频高幅值、低频低幅值、中频低幅值和高频低幅值。花岗岩破裂过程中大尺度破裂声发射表现为低主频、高幅值和高能量的特征,对应低频高幅值声发射信号;小尺度破裂表现为低幅值和低能量,低、中和高主频共存的声发射特征,对应低频低幅值、中频低幅值和高频低幅值3种模式声发射信号。中、高频低幅值和低频高幅值3种模式声发射信号,适合作为花岗岩破裂预测的主要信号源,前兆特征表现为:中、高频低幅值信号逐渐消失,低频高幅值信号出现,即出现中、高频低幅值信号平静,而低频高幅值信号不平静的现象。高频低幅值和低频高幅值信号的前兆响应系数为0.2,中频低幅值信号前兆响应系数为0.14,相比中频低幅值信号,高频低幅值和低频高幅值信号的前兆响应时间早,前兆响应能力较强。  相似文献   

6.
选取粗粒花岗岩和细粒砂岩,通过预制方孔和圆孔,开展单轴加载条件下岩石破坏声发射试验。采用单纯形定位算法,对岩石破裂过程中的声发射时空演化规律进行研究,并对声发射活动特征、能量释放率和空间相关长度进行分析。研究结果表明:对于预制孔间距与预制孔尺寸相同的试件,声发射事件主要在岩石中部群集,试件以中部剪切破坏为主,声发射三维定位事件直观反映裂纹初始、扩展直至贯通的动态演化过程;在整个加载过程中,颗粒较粗且大小不均的花岗岩试件声发射活动性较强,颗粒较细且均匀的砂岩试件声发射活动性在加载后期才开始增强;岩石破坏前,小尺度裂纹合并贯通形成大尺度裂纹,声发射率下降,能量释放率增强,出现声发射信号“平静”而能量释放“不平静”的现象;岩石在受载过程中,应力场通过迁移和重新分布逐步建立起长程相关性;岩石破坏前,空间相关长度显著增加,且在岩石破坏时达到最大值。  相似文献   

7.
花岗岩单轴受压条件下声发射信号频率特征试验研究   总被引:3,自引:1,他引:3  
研究分析破裂过程不同阶段的声发射信号频率特性,对于选出相应谐振频率的声发射传感器具有重要意义。通过单轴压缩试验,结果表明:花岗岩受压过程中主要经历3个受力阶段,声发射振铃计数率随相对应力的增加呈现出阶段性的变化规律,声发射信号优势频率主要发生在岩石破裂前塑性破坏和主破裂阶段,且集中在41~85kHz。在相对应力较低时,花岗岩声发射信号频率以低频为主,随着相对应力的增加,其高频、低频信号密集且幅值很大,因此高频高幅值声发射信号的突然增多预示花岗岩有破坏危险。  相似文献   

8.
采用岩石声发射三维定位系统和颗粒流模拟软件PFC2D对单轴荷载作用下大理岩损伤破坏过程中的声发射活动规律展开研究。结果表明:(1)压密与弹性变形阶段,岩石声发射活跃度低,AE事件数量分别占总量的2%和18%,AE震源离散。塑性变形阶段中,岩石声发射活动最为剧烈,AE事件数量占总量的74%,AE震源集中于岩石破裂面。峰值应力后期,岩石声发射活动急剧降低。(2)对比试样AE事件定位、颗粒流模拟与岩石损伤破裂状态发现,三者具有高度一致性,前面二者可成为研究岩石损伤演化的重要工具。(3)以岩体声发射能量释放为依据,将大理岩的损伤过程分为初始损伤阶段、损伤稳定发展阶段、损伤加速发展阶段、损伤破坏阶段。损伤加速发展阶段中,岩体裂隙系统发展最快,声发射能量释放率最高,损伤变量逐渐增长至最大值,岩体即将破裂失稳。  相似文献   

9.
水力耦合下岩石的声发射特征试验研究   总被引:7,自引:2,他引:7  
在单轴压缩条件下,分别讨论了4种岩石在考虑渗流和不考虑渗流条件下的声发射特征。研究表明:在低应力阶段,岩石几乎没有声发射活动,淳流对声发射活动无影响:一般在达到其强度的60%~80%左右、临近破坏时,声发射活动才显著增加;加渗流和卸渗流的瞬间均产生较大的声发射事件,从稳定渗流到卸渗流一般接收不到明显的声发射信号;岩体破坏的声发射过程分为4个部分,即初始区、剧烈区、下降区和沉寂区;在破坏时,声发射信号的主频分布较宽,其中不加渗流时低频成分所占的比例超过了50%,坚硬岩石主频的最大值较破坏前、后急剧增大;加渗流或长期浸泡(130h左右)时低频成分所占的比例超过了60%~80%,软化岩石土频的最大值较破坏前后变化不大;岩石的声发射主频与岩石的强度有关,强度越高,主频也越宽;随着应力的增加,有些岩石的声发射主频最大值有增大的趋势。  相似文献   

10.
采用MTS815 Flex Test GT岩石力学试验系统及声发射(AE)三维定位实时监测系统,开展北山深部花岗岩不同应力条件下岩石破坏的声发射特征研究。试验得到北山花岗岩的直接拉伸强度为9.53 MPa,仅为其单轴平均抗压强度的1/17。试验结果表明,在拉伸应力条件下,由于无原生微裂隙闭合过程,声发射事件出现时间较晚并集中出现于破坏阶段;峰值应力后,声发射信号的继续增加说明花岗岩并未立刻破断,而仍具有一定拉伸承载能力。在压缩应力条件下,初期加载阶段即有声发射信号出现并随加载应力增加而持续增长,反映原生裂纹闭合及新生裂纹扩展演化的过程;随着围压增加,花岗岩在峰值应力阶段延性变形特征显著增强,其内部裂隙(损伤)在该阶段渐进式发展,导致声发射事件的集聚量远高于其他阶段;同时,围压增加使北山花岗岩的非线性特征增强,特别是破坏前的显著延性变形特征与其他工程常见花岗岩特性具有明显不同。研究得到北山花岗岩在不同应力状态下的变形特征和声发射特征,为北山花岗岩在不同应力条件下损伤演化机制研究奠定基础。  相似文献   

11.
岩石单轴压缩变形破坏全过程的应力阶段划分及其声发射特征,有助于预测加载岩石所处的应力状态。本文以粉砂岩为例,从声发射事件累积曲线、频率时间散点图、空间分布特征3个方面,确定岩石全应力–应变曲线七个阶段的声发射特征。首先,对声发射事件上述3个方面的各种几何特征进行初步归纳,定义了AE平台、AE阶梯、主频带、贯频、加密集聚等特征,可更细致地表现声发射的演化规律。其次,通过粉砂岩FSA单轴压缩实验的声发射定位,得到全应力–应变过程7个阶段声发射的时空演化特征,发现声发射事件累积曲线、频率时间散点分布、AE事件空间分布的组合特征可以独立地识别七个阶段。细观机制分析表明,来自于应力的裂隙机制和原始裂隙构形的尺度、方位,对各应力阶段声发射综合演化特征有重大影响。类似于地震弹性回跳理论,岩样峰前软化段(第四阶段)的构造集聚形成剪切局部化,导致了峰后应力跌落主破裂的发生,更多声发射由弹性能释放造成的裂隙损伤过程激发,峰前软化段的声发射特征(AE大平台、AE阶梯,纵向AE主频线变稀疏、变贯通,多区加密集聚型)可以作为岩石破坏前兆。最后,进行不同岩性声发射时空演化特征的比较,发现声发射特征受细观裂隙激发超声振动这一物理过程的控制,粗硬的矿物颗粒、较强的颗粒胶结强度、分布均匀的微构造,容易被激发出更多的声发射事件、更多的频带和贯频。因此,应用声发射时空演化特征监测识别岩石的应力加载状态时,必须系统地考虑岩石结构构造对细观裂隙过程的影响。  相似文献   

12.
断裂岩石在长期地质力学作用下发生蠕变,并伴有声发射,此声发射规律可为岩石稳定性监测和预警提供有益借鉴。为了研究断裂岩石蠕剪过程的声发射特征,在法向力恒定的条件下,对巴西拉破坏和压剪破坏2种不同形式的断裂砂岩进行蠕变分级剪切试验,并运用全信息声发射信号分析仪进行实时监测,得到2种不同破坏形式的断裂岩石在不同蠕剪阶段声发射能量和蠕变剪切位移关系。同时,利用声发射定位系统对蠕剪过程中断裂岩石的双翼啮合和磨损进行定位,结合断裂面等高线图,预测断裂岩石在长期蠕剪中的破坏位置和破坏形式。试验结果表明:断裂岩石蠕剪失稳前声发射信号缺失;巴西拉破坏岩样蠕剪中后期声发射能量出现波峰,每段剪切位移加载前期能量达到局部最大值,之后呈现下降趋势;压剪破坏岩样蠕剪中期声发射能量出现低谷,每段剪切位移加载中期声发射能量出现局部波峰。同时,由声发射定位可知,2类断裂岩石啮合面中心部位都最先发生破坏,断裂面蠕变剪切的初期破坏具有方向性,破坏初期沿断裂面呈现带状分布并与剪切方向垂直。  相似文献   

13.
基于三轴压缩声发射试验的岩石损伤特征研究   总被引:3,自引:1,他引:2  
 利用MTS815岩石伺服试验系统和AE21C声发射监测仪,对灰岩进行三轴压缩声发射试验,利用声发射参数,分析三轴压缩条件下岩石的损伤演化特征。试验结果表明:(1) 相同试验条件下,检波器置于三轴室内时的声发射振铃计数和能量的最大值分别比置于室外时高27%和32%,表明,声发射检波器置于三轴室内能够接收到更全面、真实的声发射信号。(2) 围压使岩石压密阶段声发射活动降低,同时声发射振铃计数最大值稍滞后于岩样宏观破坏时间,说明围压提高了岩石的剪切强度和峰后承载能力。(3) 建立基于声发射累计振铃计数的岩石三轴压缩损伤演化模型,岩石的损伤演化过程可划分为初始损伤阶段、损伤稳定发展阶段、损伤加速发展阶段和损伤破坏阶段。初始损伤阶段,声发射参数较小;损伤稳定发展阶段,声发射活动明显活跃,振铃计数和能量逐渐增加;损伤加速发展阶段,声发射活动异常活跃,宏观破坏后不久声发射振铃计数和能量达到峰值;损伤破坏阶段,岩石仍具有相当的承载能力,在破坏过程中仍有声发射活动出现。  相似文献   

14.
不同含水状态下砂岩剪切过程中声发射特性试验研究   总被引:5,自引:2,他引:3  
 利用自主研发的煤岩细观剪切试验装置和PCI–2型声发射测试分析系统对饱和度分别为0%,50%和100%三种不同含水状态下砂岩剪切破坏过程中的声发射特性进行试验研究,探讨声发射信号随时间的演化规律及其与砂岩裂纹的开裂、扩展之间的关系。研究结果表明:声发射活动伴随着砂岩整个剪切破坏过程,表现为剪应力峰值前,声发射活动不显著,声发射信号均较小,而在剪应力峰值后声发射信号出现剧增;且随着含水量增加,砂岩抗剪强度依次减小,声发射信号的剧增点出现的时间相应提前;在各含水状态下,声发射事件率峰值出现的时间总是滞后于剪应力达到峰值的时间;饱和度为0%时砂岩表面裂纹出现在剪应力峰值之后,且声发射活动最强烈,破坏时的累计声发射事件数最多,即累计损伤最大;而饱和度为50%和100%时砂岩表面裂纹出现在剪应力峰值之前,破坏后累计声发射事件数相对较少,累计损伤也相应小一些。  相似文献   

15.
 通过对花岗岩在不同围压下循环加卸载声发射(AE)试验,得到岩石加卸载损伤破坏过程中高、低频通道中AE累计振铃计数、岩石应力与时间的关系。基于此,研究岩石AE的不可逆性特征。同时运用快速傅里叶变换FFT逆变换对Kaiser点AE信号进行消噪,并通过FFT分析消噪后信号的频谱特征,探求岩石主破裂前特征信息。研究结果表明:(1) 两通道中接收到的AE振铃计数整体变化趋势基本相同,所揭示的Kaiser效应和Felicity效应规律基本一致;两通道中AE振铃计数特征主要区别在于数量不同;(2) Kaiser点主频分布在46.39~70.80与151.37~166.99 kHz范围内。岩石主破裂前,随轴向应力水平增加,低频通道中Kaiser点主频整体变化趋势由较低频向较高频转移,高频通道中由较高频向较低频转移;(3) 花岗岩Kaiser效应应力上限值为极限强度的65%左右。Kaiser点的主频特征及变化规律,可为岩石的损伤破坏评价提供依据。  相似文献   

16.
拉伸应力状态下花岗岩声发射特征研究   总被引:2,自引:1,他引:1  
利用MTS815 Flex Test GT岩石力学试验系统和PCI-2声发射(AE)三维定位系统,对甘肃北山花岗岩在直接拉伸和间接拉伸试验条件下的强度、变形及其破坏全过程的声发射特征进行研究。试验结果表明:直接拉伸得到的抗拉强度的平均值、最大值和最小值均分别高于间接拉伸,且前者峰值应力时的应变量小于后者,约为后者的6.03%;直接拉伸试验加载开始至40%峰值应力阶段,声发射较为平静,此后声发射计数和能量均开始增加,接近峰值应力时,声发射事件数达到最大;间接拉伸试验整个破坏过程的声发射计数率基本持平,但40%峰值应力前的初期加载阶段的声发射能率高于40%峰值应力后;间接拉伸过程中,试件受压缩应力及加载接触部位屈服破坏的影响,能量释放量高于直接拉伸。  相似文献   

17.
以干燥、自然和饱和含水3种典型状态的泥质粉砂岩为研究对象,进行单轴压缩破坏全程声发射检测试验,研究了3种状态下岩石破裂的力学和声发射特性的不同。研究结果表明:含水使得泥质粉砂岩软化,且峰值应力和弹性模量均随含水率的增加而减小,变形特征由脆性逐渐向延性转化;声发射累计事件数、声发射事件率峰值、声发射累计绝对能量、声发射绝对能率峰值等声发射参数均随含水率的增加而减少,即含水使得泥质粉砂岩损伤破裂程度减小,破裂全程能量释放水平降低;根据试验所得声发射累计事件数和累计绝对能量随时间变化曲线,得出含水率使得泥质粉砂岩由“突发型”的脆性破坏向“平稳型”的延性破坏过渡。  相似文献   

18.
为了研究裂隙花岗岩强度特征及破坏过程,对裂隙花岗岩进行单轴压缩下的声发射测试,基于应力–应变数据、声发射多参量特征、摄像记录综合分析裂纹扩展特征及其相互变化关系。研究结果表明:裂隙倾角?对起裂应力和破坏强度影响较大,弹性模量和起裂应力随?单调增大;裂隙花岗岩应力–应变曲线在峰前呈阶梯状上升,尤其当?较小时,发生多次应力突降,应力降对应模量的快速弱化、AE事件率和能量率的剧烈凸起;AE事件率表现出明显的三阶段特征,随着?的增大,三阶段特征逐渐弱化,岩石的脆性破坏程度增大,应力降和AE凸起数量逐渐减小,AE事件率和能量率最大值对应的应力逐渐增大;相比AE事件,能量率最大值的发生更靠近峰值强度,且变化更剧烈;AE震源时空演化很好地描绘了裂纹的三维扩展区域和分布规律,稳定增长期震源数量和幅值均较小,高速增长期大幅值震源数量快速增加,尤其是在临近破坏前。  相似文献   

19.
为认识二长花岗岩在不同受载路径条件下破坏过程中声发射特征,通过三轴循环加卸载压缩试验和声发射试验,分析了玲珑金矿二长花岗破坏过程应力应变曲线和声发射特征参数的关系,结果表明:(1)在花岗岩的循环加卸载过程中,声发射信号主要出现在加载期的超过前一循环最大值的阶段和卸载过程的初期,弹性加载和卸载阶段后期基本无声发射现象;(2)岩石声发射活动与岩石变形破坏过程以及能量释放特征规律密切相关,在对二长花岗岩的加卸载试验的过程中,随着加卸载的进行,存在着声发射活动的活跃期和相对平静期;(3)主破裂阶段及峰后相对应力较高的时期所释放的能量要远高于卸荷阶段的初期、塑性变形的中后期这两个活跃期释放的能量,该阶段绝大部分的弹性应变能释放出来;(4)在岩石试样初期的循环加卸载过程中,岩石内部塑性破坏程度较低,Kaiser效应显著,后期的循环加卸载过程中即塑性阶段的中后期,Felicity效应显著;(5)岩石进入塑性变形的中后期,微破裂发展至破坏阶段,裂纹大量扩展、贯穿,形成宏观裂缝,弹性应变能大量释放,AE信号强烈,当达到塑性中后期的标志点时,岩石试件即到了主破裂的前夕。  相似文献   

20.
岩石破裂过程存在热红外和声发射信号变化,因此研究含裂隙岩石破裂过程热–声信号具有重要意义。为研究不同岩性裂隙岩石破坏过程的热–声敏感强度,对花岗岩、玄武岩、红砂岩、灰岩及大理岩试样开展了单轴压缩试验,对试样加载过程临空面温度和内部声学信号进行了监测,提出了热–声敏感性联合分析指标。研究结果表明:热–声联合指标时序敏感性依次为:红砂岩、灰岩、大理岩、花岗岩、玄武岩;热–声联合指标峰值敏感性依次为:玄武岩、花岗岩、大理岩、灰岩、红砂岩;热红外温度信号早于声发射信号;联合指标能够避免声发射信号的滞后性和热红外的空间局限性;各岩性岩石破裂过程中热–声信号和应力有很好的对应关系。相关研究可为岩石突发性失稳破坏的分析和防治提供有益参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号