共查询到20条相似文献,搜索用时 15 毫秒
1.
遥感影像中的建筑物是城市大数据采集、分析的重要来源。大规模、高精度的遥感影像建筑物提取模型对智慧城市时空大数据建设、推动城市智能计算具有重要意义。当前建筑物提取模型通常利用大型卷积神经网络模型或多种网络模型串联,并辅以其他边界细化算法来提高建筑物提取的精度。但是,网络模型的大型化、复杂化对计算资源消耗高,需要更多的训练时间或算力,不利于大规模快速的网络模型训练预测及在便携式等终端设备上部署应用。因此,研究面向大规模快速的遥感影像建筑物提取,提出一种轻量化全卷积神经网络模型和特征融合方案,模型参数较轻量化前减少约40%,GPU内存占用下降33.61%,平均训练时间和预测时间分别下降32.40%和26.31%。融合后的模型在公开数据集测试得到的MIoU精度在74.14%左右,达到了保证高精度建筑物提取前提下模型轻量化的预期。 相似文献
2.
遥感图像分类是模式识别技术在遥感领域的具体应用,针对遥感图像处理中的分类问题,提出了一种基于卷积神经网络(convolutional neural networks,CNN)的遥感图像分类方法,并针对单源特征无法提供有效信息的问题,设计了一种多源多特征融合的方法,将遥感图像的光谱特征、纹理特征、空间结构特征等按空间维度以向量或矩阵的形式进行有效融合,以此训练CNN模型。实验表明,多源多特征相融合能够加快模型收敛速度,有效提高遥感图像的分类精度;与其他分类方法相比,CNN能够取得更高的分类精度,获得更优的分类效果。 相似文献
3.
为解决深度神经网络在对遥感图像进行目标检测时网络参数庞大、计算效率低下的问题,本文提出了一种轻量级神经网络模型G-YOLOv3.G-YOLOv3算法网络的主要构件为嵌套残差块,每个残差块中都包含了本征特征图与相似特征图,且残差块中添加注意力机制,增强了网络的学习能力,降低了网络所需参数和计算复杂度,提高了目标检测速度.... 相似文献
4.
针对于遥感图像中背景复杂噪声多、小目标多且排布密集、目标尺度差异大等问题,提出了一种改进通道注意力与残差收缩网络的遥感图像目标检测算法。该算法借助卷积神经网络,以YOLOV3模型作为基础网络,选择Mosaic图像增强的方式进行数据预处理,采用深度残差收缩模块重构了特征提取网络,并结合通道注意力机制与组合池化构建空间金字塔池化融合层,采用CIOU进行定位损失计算,最终实现遥感图像目标检测。实验结果表明:改进算法相比于原算法的总体mAP由89.2%提升至92.2%,获得了更好的性能表现。 相似文献
5.
针对航拍图像中存在背景庞杂、目标尺寸小等原因导致目标不易检测的问题,采用深度卷积神经网络构建目标检测模型,并引入深度残差网络作为前置网络,提高模型的学习与训练能力,解决由网络加深而产生的退化问题.针对小目标在深层网络的特征提取过程中会逐渐减弱甚至消失的问题,采用横向连接的特征金字塔结构,将浅层特征信息与深层语义信息进行... 相似文献
6.
本文面向光学遥感图像目标检测应用,针对光学遥感图像中的典型目标一飞机和汽车,提出一种改进的SSD模型:首先在SSD (Single Shot multibox Detector)网络模型基础上引入多尺度特征融合模块,实现深层特征与浅层特征的融合以获得更多的特征上下文信息,增强网络对目标特征的提取能力;其次根据数据集目标样本尺寸分布特征进行聚类分析获得更准确的默认目标框参数,从而有效提升网络对目标位置信息的提取能力.将本文模型与SSD及YOLOv3模型在常用遥感图像目标检测数据集上进行对比,目标检测精度均有较大提升,验证了该模型的有效性. 相似文献
7.
针对图像序列三维重建中多视角目标分割需要人工参与任务繁重的问题,提出一种基于卷积神经网络改进的图像自动分割方法。首先将序列图像去噪处理、归一化并进行语义标注后制作数据集,然后对改进的融合多尺度特征和残差连接的卷积神经网络进行训练,得到优化后的卷积神经网络分割模型,最后将预分割图像加载到优化的分割模型中得到归一化的掩码图,再利用三次样条插值法将其恢复分辨率后与原图做自定义的掩码操作得到高清分割结果。本文以主流分割软件PhotoShop分割结果为参考标准进行对比,实验结果证明,该方法的准确率与参考标准接近,而且可实现批量自动分割,较好的解决三维重建中目标分割任务繁重的问题。 相似文献
8.
9.
遥感技术的快速发展使得遥感图像检测技术广泛应用于军事、农业、交通、城市规划等多个领域。随着遥感分辨率和数据体量的不断提升,通过人工处理数据的方法已经无法满足实时性需求,因此,实现高效、精准的自动化数据处理方式成为该领域的研究热点。针对遥感图像分辨率高、背景复杂、目标尺度小等特点,提出一种改进的YOLOv3算法,用以提升遥感图像的检测效果。在原始YOLOv3算法的基础上,使用改进的密集连接网络替换原有的DarkNet53作为基础网络,以提升网络输入和预测结果的尺度多样性。通过阀杆模块降低输入损失,同时在浅层特征图中加入特征增强模块,从而丰富特征图的感受野,强化网络对浅层特征信息的提取,在保证整体检测性能的同时使网络对遥感图像中、小目标的检测精度和鲁棒性均有所提升。在遥感图像数据集上进行多组对比实验,结果表明,相比原始YOLOv3算法,该算法的平均准确率提高9.45个百分点,在小尺度目标上的检测准确率提升更显著,达到11.03个百分点,且模型参数量得到有效缩减。 相似文献
10.
最近几年,深层卷积神经网络在解决单图像超分辨率问题上有着不错的表现。为了改善卷积神经网络的层数越深带来的计算量越大和实时重建速度越慢的缺点,结合现有的卷积网络模型,本文提出一种轻量级的网络结构。在神经网络层中减少网络层数,利用通道分离构建出局部特征的多尺度增强结构,进一步地结合残差网络进行模型构建。实验结果表明,与LapSRN方法、VDSR方法、传统的插值法等相比,该方法实时重建速度较快,且在峰值信噪比和结构相似性上不弱于其他方法。 相似文献
11.
目的 遥感图像目标检测是遥感图像处理的核心问题之一,旨在定位并识别遥感图像中的感兴趣目标。为解决遥感图像目标检测精度较低的问题,在公开的NWPU_VHR-10数据集上进行实验,对数据集中的低质量图像用增强深度超分辨率(EDSR)网络进行超分辨率重构,为训练卷积神经网络提供高质量数据集。方法 对原Faster-RCNN (region convolutional neural network)网络进行改进,在特征提取网络中加入注意力机制模块获取更多需要关注目标的信息,抑制其他无用信息,以适应遥感图像视野范围大导致的背景复杂和小目标问题;并使用弱化的非极大值抑制来适应遥感图像目标旋转;提出利用目标分布之间的互相关对冗余候选框进一步筛选,降低虚警率,以进一步提高检测器性能。结果 为证明本文方法的有效性,进行了两组对比实验,第1组为本文所提各模块间的消融实验,结果表明改进后算法比原始Faster-RCNN的检测结果高了12.2%,证明了本文所提各模块的有效性。第2组为本文方法与其他现有方法在NWPU_VHR-10数据集上的对比分析,本文算法平均检测精度达到79.1%,高于其他对比算法。结论 本文使用EDSR对图像进行超分辨处理,并改进Faster-RCNN,提高了算法对遥感图像目标检测中背景复杂、小目标、物体旋转等情况的适应能力,实验结果表明本文算法的平均检测精度得到了提高。 相似文献
12.
遥感图像因为其自身小目标多、密集的特点而对于目标检测任务是一个挑战。设计一种多层特征融合的Faster Rcnn,丰富各特征层的信息、平衡位置信息和分类信息。算法采用ResNet作为骨干网络提取特征,通过自上而下的特征融合,得到多尺度特征图,从而增强位置信息和分类信息以得到更加精准的检测结果。与Faster Rcnn算法相比,该算法对位置信息更加敏感,准确率提高了2.7百分点。相对于经典的目标检测框架SSD, Yolo v3等的检测效果,结合了特征融合的Faster Rcnn效果得到了明显提升。 相似文献
13.
神经网络的表征能力给遥感图像目标检测任务提供了一个的便捷工具。然而,目前主流神经网络模型计算代价高限制了其在遥感图像实时目标检测任务的应用。提出一种轻量级神经网络模型用于遥感图像实时目标检测。实验结果表明,文中提出的方法在保持与Yolov3检测精度相当的情况下,模型大小约为Yolov3的十五分之一,网络模型在目标检测精度以及计算开销上可达到更好的均衡。 相似文献
14.
目标检测在自然场景和遥感场景中的研究极具挑战。尽管许多先进的算法在自然场景下取得了优异的成果,但是遥感图像的复杂性、目标尺度的多样性及目标密集分布的特性,使得针对遥感图像目标检测的研究步伐缓慢。本文提出一个新颖的多类别目标检测模型,可以自动学习特征融合时的权重,并突出目标特征,实现在复杂的遥感图像中有效地检测小目标和密集分布的目标。模型在公开数据集DOTA和NWPU VHR-10上的实验结果表明检测效果超过了大多数经典算法。 相似文献
15.
为了提高目标检测模型对遥感图像中排列密集、尺度不一的目标,特别是小目标的检测性能,提出了融合特征的深度学习遥感图像目标检测模型和方法.模型采用小规模的网络结构,以应对标记样本较少的情况,并提出了融合多级特征的策略获取更为有效的特征,使模型在不增加检测时间的同时,提高遥感图像中较为密集且大小不一的目标的检测精度.模型中提... 相似文献
16.
17.
针对遥感图像目标检测任务中存在的目标尺度差异大、检测精度低等问题,提出了一种基于加权策略的改进YOLOv3遥感图像目标检测模型.为提高对遥感图像中小目标的检测精度,增加具有较小感受野的特征图像的检测分支.设计了一种多尺度特征图像自适应加权融合方法,通过挖掘特征提取网络的表征能力,综合利用多尺度特征提高了目标检测精度.采... 相似文献
18.
《计算机应用与软件》2019,(1)
针对遥感图像中目标物体过小,不易检测的难点,提出对SSD的改进网络FD-SSD(Feature Fusion and Dilated Convolution Single Shot Multibox Detector)。FD-SSD去掉了SSD网络数据预处理层的随机剪裁步骤,并结合FSSD将具有高分辨率的低层特征图和具有高语义信息的高层特征图进行融合。使用空洞卷积增大第三层特征图的感受野,利用具有高分辨率的低层特征图对小目标进行预测。同时不再使用1×1的顶层特征图产生目标框。模型训练阶段将原始遥感图像进行"二次切割"处理,增加训练样本量。在预测阶段先将原始图像进行切割预测,再将目标框映射回原图,并对原图所有的目标框进行二次非极大值抑制(NMS),保留最优目标框。FD-SSD在DOTA数据集上有良好的表现,比原始SSD的m AP提升31%。 相似文献
19.
20.
为了解决对于尺度变换较大车辆及遮挡车辆检测性能不足的问题,提出了一种实时车辆检测模型.针对车辆检测算法对于尺度敏感的问题,通过使用深度残差网络作为特征提取层,构建特征金字塔网络用于多尺度检测;利用软化非极大抑制线性衰减置信得分解决车辆遮挡问题,从而降低车辆的漏检率;同时对模型进行通道级裁剪缩减模型参数规模,节省计算资源... 相似文献