首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着无人机搭载目标检测算法在输电杆塔绝缘子巡检领域的发展,针对绝缘子缺陷检测速度较低,网络复杂度高且缺陷小目标难以准确检测的问题,提出一种基于轻量化网络与增强多尺度特征融合的YOLOv5-3S-4PH模型进行绝缘子缺陷实时检测。首先将重构的ShuffleNetV2-Stem-SPP(3S)网络作为YOLOv5的主干网络,显著减小了网络的参数量和计算量;其次引入针对小目标的增强多尺度特征融合网络以及4个预测头,来增强网络对绝缘子缺陷的感知能力,并结合Mosaic-9数据增强、CIoU损失函数进一步补偿轻量化导致的检测精度损失;最后将其应用到自制绝缘子数据集进行验证。实验结果表明,该文所提出的模型相对于未改进的YOLOv5,全类平均精度提高了3%,检测速度提高了81.8%,参数量、计算量分别压缩了82.4%、67%。因此,所提出的模型更适合部署在无人机平台上进行绝缘子缺陷的实时监测。  相似文献   

2.
绝缘子作为输电线路中重要的元器件,对绝缘子缺陷的识别和定位在电网巡检方面有重要意义。为了对雾天情况下绝缘子状态进行准确定位识别,改进了YOLOX目标检测网络。首先,为了加快网络的训练速度,改进了激活函数;其次,为了解决小目标样本相较于整体样本较少和样本不均衡的问题,改进了图像增强方法和损失函数;最后,将改进的YOLOX网络在数据集上与4种目标检测网络进行比较。实验结果表明,在雾天数据集上,改进后YOLOX的准确度、平均准确率和每秒处理图片张数都有一定提升,符合无人机巡检的要求。  相似文献   

3.
芯片的表面缺陷检测在半导体制造中具有重要意义,针对目前芯片表面缺陷面积小,缺陷外形多变,缺陷尺寸跨度大的情况,提出一种基于YOLOv5改进的芯片表面缺陷检测算法,首先基于ConvNext网络改进特征提取模块,提升网络稳定性和特征表达能力,同时提出增强卷积注意力模块(ehanced convolutional block attention module, E_CBAM),将更详细的位置信息嵌入到卷积注意力(convolutional block attention module, CBAM)之中,提升整个网络对于小面积及边缘缺陷的检测能力,而针对芯片缺陷多变尺寸跨度大的问题,研究引入了可变形卷积和双向特征金字塔网络(bi-directional feature pyramid network, BiFPN),一方面可变形卷积对于外形不规则的卷积有更好的提取能力,另一方面Neck部分的BiFPN在简化结构的同时保证了多尺度融合的准确性。经过实验表明,改进后的网络在芯片表面缺陷数据集(chip defect dataset, CDD)上,平均精度均值(mAP)mAP@0.5指标达到95.3...  相似文献   

4.
绝缘子广泛应用于电力系统的各个环节,对保障电网安全稳定运行起到重要作用。现有方法只能识别自爆缺失、异物等明显缺陷,无法应对局部破损、裂纹等情况。针对上述问题,提出一种基于增强特征金字塔和可变形卷积的绝缘子缺陷检测方法:在原有高、低特征融合的基础上,增加增强的自底而上的路径,改善高、低特征图之间的信息传递,实现局部缺陷特征的有效提取;引入可变形卷积,自适应改变局部采样点,减小背景干扰的影响,进一步提升模型的适用性。利用多场景采集的绝缘子图像进行对比实验,结果显示在不同基础网络上,所提方法检测精度较传统方案均取得了较大程度的提升,该方法可广泛应用于变电站、高压输电线等各类绝缘子应用场景。  相似文献   

5.
针对输电线路巡检中可能存在拍摄图像质量不高的问题,以及线路缺陷目标小而分布密集而导致传统方法检测精度不高的问题,提出一种基于超分辨率重建与多尺度特征融合的输电线路缺陷检测方法。首先,使用超分辨率网络对巡检图像进行重建,提升清晰度,丰富图像中包含的特征信息;然后使用改进的YOLOX网络检测巡检图像中的缺陷,在主干网络中嵌入卷积块注意力机制,强化模型对重叠小目标的定位能力;为进一步提升小目标的检测能力,在YOLOX的特征融合网络中新增浅层检测尺度进行特征融合;最后,通过使用CIOU优化边界框损失函数提升模型收敛能力,降低缺陷目标的漏检率。实验结果表明,所提方法能在提升巡检图像质量的基础上对输电线路缺陷准确地检测,精度达到93.27%,相比SSD等经典模型,对小而密集的缺陷目标有着更强的提取能力和鲁棒性。  相似文献   

6.
皮俊  邹怡 《电气开关》2020,(6):62-64
由于绝缘子一般处于输电线路铁塔顶端,检测环境复杂,人工检测效率不高,危险程度较高。针对这一问题,本文提出采用直升机搭载智能检测工具的方法,对离地较高的绝缘子进行智能检测,通过对绝缘子进行全方位扫描,智能发现缺陷部分,并进行标识,自动识别出玻璃绝缘子损伤的区域。采用图像处理的智能方面,降低了人工检测的危险性,并且提高了检测速度,通过实际绝缘子的图像处理,验证了该方法的有效性和实用性。  相似文献   

7.
基于多特征融合的玻璃绝缘子识别及自爆缺陷的诊断   总被引:1,自引:0,他引:1  
在无人机检测输电线路缺陷研究中,为提高识别绝缘子的正确率,有效降低背景纹理及光线的影响,提出了一种融合绝缘子形状、颜色与纹理进行识别绝缘子的方法。针对玻璃绝缘子的掉片缺陷,研究了一种感知绝缘子片重心间距离的缺陷检测方法。该方法对绝缘子正确识别率高于90%,误识别率低于10%。通过无人机巡检采集的大量输电线路图像,实验结果验证这种方法在各种复杂背景条件下能有效地识别出绝缘子,并能检测玻璃绝缘子的掉片缺陷。  相似文献   

8.
设计了一种绝缘子识别定位与自爆缺陷检测方法。识别定位算法首先使用最大类间方差法对绝缘子进行分割,然后提取绝缘子不变矩特征值,最后使用Adaboost分类器定位绝缘子位置。针对自爆绝缘子的形状特点,设计了计算相邻绝缘子的欧氏距离的检测方法。自爆缺陷检测方法在处理多个自爆点时检测效果较好,准确率达到87%。通过实验得出,方法准确率较好,更加适合在实际场景中应用。  相似文献   

9.
当前输电线路显著性目标检测已取得重大突破,但在预测显著区域的“完整性”上仍存在局限性,难以完全识别及定位输电线路上绝缘子串缺陷。本文利用完整性感知网络来检测输电线路上绝缘子串,首先通过特征聚合模块来提取不同层次的特征,其次通过完整性增强模块突出显著目标通道并抑制其他干扰通道,最后通过部分-整体检验模块来确定目标特征的部分和整体是否有强烈的一致性,可提高有缺陷绝缘子串的识别准确率。本文算法与目前公开的3种流行算法进行主客观对比,发现本文算法在绝缘子串与背景融合程度较高时的显著性检测上更有优势。  相似文献   

10.
针对Faster R-CNN算法对复杂环境下的小样本绝缘子缺陷检测精度不高的问题,本文提出了一种融合迁移学习和主体局部的绝缘子缺陷分级检测方法。整个方法使用融合残差模块和特征金字塔结构的卷积神经网络作为骨干网络进行特征提取,用于适应不同尺度的缺陷目标,保留更多有效信息。首先使用迁移学习的方法改善对缺陷所在绝缘子主体的检测效果;然后对检测出的绝缘子主体进行自动裁剪来改善复杂背景对缺陷区域检测的影响,使得模型能够更有效地挖掘出缺陷特征;最后将裁剪后的缺陷绝缘子局部图像送入第二阶段进行训练,进一步提高模型准确率。通过对无人机航拍采集的绝缘子缺陷图像进行检测实验。结果表明,本文方法相较于Faster R-CNN基线模型平均精度提高了37.5%,达到了89.6%。在对自爆和破损检测上,精度分别提高了34.9%和60.2%。  相似文献   

11.
近年来,复合绝缘子被广泛应用于输电线路上,但是在户外条件下长期带电运行发生老化、生产不达标和运输操作不规范,都可能导致内部产生缺陷。传统的单一太赫兹特征参量成像方法面临缺陷成像结果较模糊的缺点,不利于缺陷的有效识别。该文采用基于主成分分析(principal component analysis,PCA)技术的特征参量融合方法,基于融合后数据的成像结果质量得到了显著提升。首先,搭建可进行样品扫描和太赫兹信号采集的成像平台,并进行信号幅值、信号包络面积、信号功率值和频谱幅度值的成像。通过比较发现,频谱参数成像结果信噪比低于时域参量成像结果,但对于边缘的成像效果更好。将10个频段的频谱幅度均值计算结果进行融合并用于成像,得到的成像结果包含更多的特征信息,图像质量得到了大幅提升。基于Canny算子检测了缺陷边缘,结果显示基于融合数据的成像结果缺陷面积误差率比单一特征参量成像结果更低。最后,对含裂纹缺陷平板样品和含气隙缺陷真型复合绝缘子短样开展实验,进一步验证了该方法的有效性。  相似文献   

12.
针对巡检图像中绝缘子缺陷尺度不一造成检测效果不佳的问题,提出了一种基于多尺度上下文感知的绝缘子缺陷检测网络,称为上下文感知缺陷检测网络(context aware defect detection network,CAD2Net)。该网络采用ResNeSt101架构提高了对图像的特征提取能力。设计了改进特征金字塔结构,构建不同分辨率的丰富语义特征图,以更好地检测不同尺度的目标。同时,在网络的检测单元中增加感受野自适应(adaptive receptive field,Ada-RF)模块聚合多尺度上下文信息,生成更具辨别力的特征,改善网络对不同尺度目标的检测效果。在随机生成缺陷的样本集及公开数据集上的平均检测精度分别达到91.7%及91.0%。结果表明:所提出的缺陷检测网络能够对不同尺度绝缘子的缺陷进行准确识别与定位。  相似文献   

13.
作为输电线路巡检中的关键技术,绝缘子的高效检测在维护输电系统安全稳定运行中发挥着重要作用.针对现有方法存在的易丢失目标位置信息,对于复杂背景下的绝缘子检测精度低等缺点,提出一种基于特征金字塔和多任务学习的绝缘子检测方法.通过融合高、低维度特征信息来构筑特征金字塔,避免目标位置等细节信息的丢失,实现复杂背景中绝缘子的高效检测;引入多任务学习算法,进一步提升模型的泛化能力,提升绝缘子检测精度.利用无人机航拍所得的绝缘子实际图像进行实验,结果表明所提方法可将绝缘子检测精度提升至95.3%,具备较高的工程应用价值.  相似文献   

14.
基于纹理特征的绝缘子检测方法   总被引:2,自引:0,他引:2  
在图像/视频中自动检测和定位绝缘子是绝缘子故障诊断的重要前提,但是目前还没有高效的、成本较低的检测绝缘子方法。本文提出了一种基于纹理特征的绝缘子检测方法。首先,根据绝缘子的纹理性,利用图像的灰度共生矩阵方法产生出绝缘子的基本纹理特征;然后利用特征选择算法挑选出一组最有效、分类效果最好的特征;最后利用这组最有效特征可以准确检测到绝缘子。实验表明,该方法能够较好地在图像/视频中检测和定位绝缘子。  相似文献   

15.
无人机巡检已经成为当下输电线路巡检的主流方式,绝缘子缺陷的检测是无人机巡检中的重要环节。因此,提出了一种基于改进YOLOv5的轻量化绝缘子缺陷检测算法。首先,使用轻量型的Ghost卷积代替普通卷积;然后,使用重复加权BiFPN(双向特征金字塔网络)替换原特征提取网络,提高网络对不同尺度的特征提取能力;最后,引入CA(坐标注意力机制)提高了主干特征提取效率。实验结果表明,绝缘子检测的平均精度值提升了1.7个百分点,模型大小减少了13.1%,改进后的算法模型在提升检测精度的同时更加轻量化,可实现绝缘子缺陷的快速检测。  相似文献   

16.
绝缘子是输电线路重要的组成部件,带有缺陷的绝缘子会对线路造成隐患,通过图像检测技术可以提高绝缘子缺陷检测的效率,大大减小维护成本.但现有的绝缘子缺陷检测技术有精度不高和检测时间过长等缺点,针对这一问题,提出了基于EfficientDet和双目摄像头的绝缘子缺陷检测方法,首先通过双目摄像头设计了一种数据集采集的方法,解决...  相似文献   

17.
现有的针对PCB裸板的缺陷检测方法存在精确度低、实时性差且难以在移动端部署等问题,本文以YOLO(you only look once)v4算法为基本框架并对其进行改进,提出了一种专门针对PCB裸板的缺陷检测算法。针对YOLOv4算法难以在移动端部署的问题,采用GhostNet取代CSPDarknet53以轻量化整个检测网络。为弥补YOLOv4算法在多尺度特征融合方面的性能不足,提出了一种双向自适应特征融合网络AF-BiFPN取代PANet网络。为进一步提高模型的检测精度,在AF-BiFPN特征融合网络的采样的过程中插入m-ECANet通道注意力机制。实验结果证明,改进后的YOLOv4算法的模型大小为18.64 MB,检测的平均精度(mean average precision, mAP)为98.39%,检测速度为62.23 FPS,可为实际PCB裸板检测提供理论指导。  相似文献   

18.
针对输电线路无人机实时巡检过程中,通用目标检测算法在移动端运行速度过慢或无法运行的问题,提出一种将多尺度特征融合方法与输电线路关键部件的检测相结合的算法MSFF-KCD(Multi-Scale Feature Fusion in Key Component Detection)。该算法结合关键部件的特征,使用深度可分离卷积设计了特征提取网络DPNets,提高了算法在具有边缘计算能力的移动端ARM设备上的运行速度,同时采用多尺度特征融合方法,将分辨率低的特征图与分辨率高的特征图进行融合,使用多个特征融合后的特征图进行分类与检测,提高了算法的平均精度。选取了绝缘子、悬垂线夹、防震锤三类关键部件进行实验,结果表明,该算法在ARM设备上可达到每张66 ms的检测速度和86%的准确率,适用于移动端关键部件检测。  相似文献   

19.
绝缘子是电力线路中重要且使用广泛的器件,随着近年来无人机巡线的迅速普及,从航拍图像中检测绝缘子自爆缺陷成为热点问题.在航拍图像中,自爆绝缘子与正常绝缘子的区分难度相对更大,该文提出一种基于层次多任务深度学习的绝缘子自爆缺陷检测模型,使用专用的卷积神经网络区分自爆绝缘子和正常绝缘子,并结合多任务学习和特征融合方法提高分类...  相似文献   

20.
绝缘子室温硫化硅橡胶(room temperature vulcanized silicone rubber, RTV)涂层的二次喷涂可以有效延长绝缘子的使用寿命,保障电力系统的安全运行。针对喷涂质量的评估问题,提出一种基于卷积神经网络的RTV喷涂缺陷自动检测方法:首先构建绝缘子RTV喷涂区域提取网络模型,对绝缘子RTV喷涂区域进行精确分割;然后构建绝缘子RTV喷涂缺陷检测网络模型,对5种喷涂缺陷进行语义分割。实验结果证明,所构建的喷涂缺陷检测网络模型在评价指标上优于主流的语义分割网络,具有良好的性能,能够满足应用需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号